Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this work, the process of formation of metastable phases was investigated for the Fe75B25 composition. Mechanical synthesis was performed in a MAPF-2M high-energy planetary ball mill under an argon atmosphere. X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Mössbauer spectroscopy (MS) were applied to recognize the phases. After 6 h of milling, the material consisted of two phases, that is, metastable tetragonal t-Fe2B and amorphous phases. During further thermal processing, the metastable phase was transformed into the stable Fe2B phase.
EN
Solid state reaction and evolution of phase composition by milling of Fe50Ge50 powder mixture using two types of mills - Fritsch P-5 and figh energy MAPF have been studied. X-ray diffraction, Moessbauer spectroscopy and differential scanning methods were used for analysis of milling products. In different mills the chemical interaction between Fe and Ge occured in different ways. Final mechanically alloyed phase was nanocrystalline FeGe (B20) however the process of FeGe formation was completed after 100 h MA in Fritsch and after 2 h MA in MAPF.
EN
The cobalt rich Co-Al alloys prepared by mechanical alloying (MA) have been investigated using X-ray analysis and differential scanning calorymetry. At the initial stage of MA fcc Co high-temperature modification transforms to the hcp Co low-temperature one. The prolongation of milling leads to reverse transformation Co (hcp) -> Co fcc (al) solid solution formation. The structural transformation of Co under ball milling is closely related to the amount of stacking faults accumulated in both modifications of Co during milling. Al dissolves only in fcc Co and increases its stability. Even small amount of Al (3 at. %) stabilizes the stacking faults in hcp Co and accelerates structural transformation to fcc modification. The amount of fcc Co (Al) solid solution increases with the milling time and the milling energy. MA of Co - 15-25 at. % Al powder mixtures results in CoAl intermetallic and fcc Co(Al) solid solution formation at the intermediate stage of the synthesis. The intermatallic phase is fractured by long term milling. MA of Co - 50 at. % powders leads to single-phase CoAl intermtallic formation. The thermal tratment at 720 degrees C of the alloys sinthesized by MA leads to decomposition of the solid solution into the following phases Co fcc (Al), B2 CoAl and Co3Al metastable phase (type L12). This metastable phase decomposes at higher temperature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.