Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Fused deposition modeling (FDM) technology is one of the rapidly growing techniques used for producing various complicated configurations without the need for any tools or continuous human intervention. However, a low quality of surfaces results for the layered production used in FDM. It is essential to investigate a suitable method for enhancing the accuracy and quality associated with FDM parts. This study aims to investigate the impact of different parameters such as the percentage of infill density, the shell thickness, layer thickness, and the number of top/bottom layers, as well as the percentage of infill overlap on part quality and the improvement of surface finish for printed specimens achieved through post-processing. Polylactic acid (PLA) material is used in building test specimens through the FDM approach. The experiments are carried out based on the Taguchi design of experiment method using (L25) orthogonal array. Using an analysis-of-variance approach (ANOVA), it is possible to understand the significance of the FDM parameters in order to find optimal parameter combinations. The results indicate that the application of the vapour smoothing procedure (VSP) treatment enhances the surface quality of FDM components to a microstage with minimal dimensional variation. The dichloromethane chemical has been found to exhibit excellent surface finish at an infill density of 50%, a layer thickness of 0.1 mm, a shell thickness of 2.8 mm, five top/bottom layer numbers, and 0.25 infill overlap.
EN
Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique that creates prototypes and parts with intricate geometrical designs. It is gaining popularity since it enhances products by removing the need for expensive equipment. The printed item's mechanical properties are affected by the type of materials used, the printing process, and the printing parameters. The 3-D model of the polylactic acid (PLA) filament generated specimens was created using the Fused Deposition Modeling procedure and developed using Solid Works. This study investigates the effect of printing parameters on the mechanical and physical properties of samples printed using a Fused Deposition Modeling machine (Creality Ender-5 Pro). Six parameters are used: infill pattern, density, overlap percentage, layer thickness, shell thickness, and top/bottom layer number. Five levels were chosen for each FDM parameter. The results illustrated how printing parameters affected the mechanical and physical properties of samples, which were proven by ultimate tensile stress, surface roughness, and percentage of tensile average deviation. A comparison between the predicted results and the measured results was presented, and the maximum percentage error of the model, which fit the data well, was 0.54%, 0.3%, and 1.36% for ultimate tensile strength (UTS), surface roughness (Ra), and Tensile average deviation percentage respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.