Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this study was to build a machine learning model to discriminate Attention Deficit Hyperactivity Disorder (ADHD) patients and healthy controls using information from both time and frequency analysis of Event Related Potentials (ERP) obtained from Electroencephalography (EEG) signals while participants performed an auditory oddball task. The study included 23 unmedicated ADHD patients and 23 healthy controls. The EEG signal was analyzed in time domain by nonlinear brain dynamics and morphological features, and in time-frequency domain with wavelet coefficients. Selected features were applied to various machine learning techniques including; Multilayer Perceptron, Naïve Bayes, Support Vector Machines, k-nearest neighbor, Adaptive Boosting, Logistic Regression and Random Forest to classify ADHD patients and healthy controls. Longer P300 latencies and smaller P300 amplitudes were observed in ADHD patients relative to controls. In fractal dimension calculation relative to the control group, the ADHD group demonstrated reduced complexity. In addition, certain wavelet coefficients provided significantly different values in both groups. Combining these extracted features, our results indicated that Multilayer Perceptron method provided the best classification with an accuracy rate of 91.3% and a high level of reliability of concurrence (Kappa = 0.82). The results showed that combining time and frequency domain features can be a useful and discriminative for diagnostic purposes in ADHD. The study presents a supporting diagnostic tool that uses EEG signal processing and machine learning algorithms. The findings would be helpful in the objective diagnosis of ADHD.
2
Content available remote Evaluation of filters over different stimulation models in evoked potentials
EN
Filtering is a key process which removes unwanted parts of signals. During signal recording, various forms of noises distort data. Physiological signals are highly noise sensitive and to evaluate them powerful filtering approaches must be applied. The aim of this study is to compare modern filtering approaches on scalp signals. Brain activities were generally examined by brain signals like EEG and evoked potentials (EP). In this study, data were recorded from university students whose age between 18 and 25 years with visual and auditory stimuli. Discrete wavelet transforms, singular spectrum analysis, empirical mode decomposition and discrete Fourier transform based filters were used and compared with raw data on classification performance. Higuchi fractal dimension and entropy features were extracted from EEG; P300 features were extracted from EP signals. Classification was applied with support vector machines. All filtered data gave better scores than raw data. Empirical mode decomposition (EMD) and Fourier-based filter yielded lower results than the discrete wavelet-based filter. Singular spectrum analysis gave the best result at 84.32%. The current study suggests that singular spectrum analysis removes noise from sensitive physiological signals, and EMD requires new mode selection procedures before resynthesizing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.