Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przekładnia mostu pędnego stanowi kluczową część samochodowego układu przeniesienia napędu, a trafne przewidywanie uszkodzeń jest istotne dla bezpiecznego użytkowania samochodu. Jednakże precyzja przewidywania uszkodzenia przekładni jest obecnie niska ze względu na zmienne prędkości obrotowe i zmieniające się obciążenia występujące podczas używania pojazdu. W celu zredukowania zmienności drgań i zwiększenia trafności przewidywania trwałości resztkowej przekładni, w artykule zaproponowano nową metodę predykcyjną, która łączy sieć neuronową o radialnych funkcjach bazowych (RBF) i rekurencyjne przetwarzanie wstępne. Metoda rekurencyjnego przetwarzania wstępnego zmniejsza wpływ zmienności chwilowego obciążenia i prędkości na charakterystyczne parametry uzyskane z sygnałów drganiowych. Sieć neuronowa typu RBF modeluje nieliniowe charakterystyki przenoszenia napędu przez przekładnię mostu pędnego. Sieć taka charakteryzuje się zachowaniem samoadaptacyjnym i szybką zbieżnością. Wyniki badań symulacyjnych i eksperymentalnych pokazują, że ta nowa metoda może pozwolić na udoskonalenie tradycyjnych metod predykcyjnych oraz osiąganie wysokiej precyzji w przewidywaniu uszkodzeń przekładni mostu pędnego.
EN
The rear axle gear is a key part of the automobile transmission system and accurate damage prediction is important for car safety. However, the precision of gear damage prediction is currently low because of the varying rotating speeds and the changing loads when a truck is in use. In order to reduce the fluctuation of vibrations and enhance the predicting accuracy of gear residual life, a new predictive method, which combines the Radial Basis Function (RBF) neural network with recursive preprocessing is proposed in this paper. The recursive preprocessing method reduces the effects of instantaneous load and speed fluctuations on the characteristic parameters extracted from vibration signals. The RBF neural network models the non-linear characteristics of the rear axle gear transmission. The RBF neural network is characterized by its self-adaptive behavior and its rapid convergence. The simulated and experimental results have shown that this new method can enhance traditional prediction methods and obtain high precision for the damage prediction of rear axle gears.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.