The interactions between the normalised difference vegetation index (NDVI), the normalised difference built-up index (NDBI), and land surface temperature (LST) are complex. The assessment of land use/land cover (LULC) changes in the North-western region of Algeria between 1995 and 2021 confirms the direct influence of these factors on surface thermal processes. The use of new information technologies, particularly remote sensing coupled with GIS, favourably contributes to the processing of a large volume of data and to the use of specific methods aimed at confirming and/or disproving the hypotheses put forward. The application of LULC classification methods clearly highlights the magnitude of transformations, predominantly in favour of intensified urbanisation over the past two decades. Indeed, agricultural lands have experienced a reduction of 17.45%, while urbanised areas have nearly doubled. This phenomenon can, in part, be attributed to the mass migration of populations from inland areas to the coast, not only due to climate change: secondary for political problems between 1990 and 2001. Similarly, barren lands have increased by 10.45%. These changes have real implications for ecosystems (mainly loss of biodiversity) and the climate (pollution, GHG emissions, and rising ambient temperatures). The estimation of average LST from multiple satellite scenes reveals an increasing trend, rising from 36.6 °C in 1995 to 40.35 °C in 2021. The direct relationship between LST and NDVI and between LST and NDBI confirms the close association between land use change and increasing surface temperatures. The Pearson coefficient between LST and NDVI showed a negative correlation, ranging between -0.52 and -0.47, while it was positively correlated between LST and NDBI, with values around 0.66. The emergence of hotspots in the region, confirmed by the results of analysis employing the Getis-Ord G* method, is marked by clearly increasing spatial envelopes. This phenomenon is associated with a distinct reduction in vegetation cover density, coupled with an increased vulnerability to drought conditions. These initial results argue in favour of preserving green and blue networks and, more largely, ecosystems.
The Ain river – tributary of the Rhone, is distinguished by a geological and geomorphological duality splitting it into two very clear parts: the mountainous (karstic-jura mountains) and the low alluvial valley of the Ain river, characterized by agricultural land use. The geographical boundary between the two zones is the dam of Vouglans (3rd water reserve of France). These geological differences give rise to two types of reserves: karstic reserves at the top of the watershed and an alluvial water table enclosed in the quaternary alluvium at the bottom. The last thirty years have been marked by the massive exodus of the rural populations of the Haut, which maintained a pastoral activity for the valleys holding most of the industries. A renewal of pastoral areas by mainly coniferous and deciduous forests, particularly in the upper part of the catchment area (Jura), reflects this phenomenon of exodus. This process was accompanied by an increase in the input of organic matter and marked deoxygenation of the deep (hypolimnion) levels of the water bodies, mostly located at the top. This physico-chemical manifestation is felt at the bottom in rivers and more particularly in the river Ain, one of the main tributaries of the Rhone. The management of water resources has been subjected to this geological and economic duality, giving rise to a SWMM (Scheme for Water Management and Management) based on the alluvial plain in the lower part of the watershed and the installation of numerous contracts of rivers on the affluent of the Ain in addition to the SWMM. One of the priority concerns of managers is the assessment of the extent of deoxygenation recorded in the plans to the rivers and especially its consequences on the lower rivers. The results of measurements and models applied show that the phenomenon is not very noticeable upstream and downstream of the Vouglans dam. Predictive simulations incorporating the GIEC recommendations (optimistic and pessimistic scenario) do not show a particular trend for 2050.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.