Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study aims to examine the water quality of Lake Sentani using both in-situ data and satellite remote sensing data. In-situ data was taken in July 2023 at 18 sampling sites, including temperature, DO, pH, TDS, and water transparency. In-situ data is also used to develop and validate algorithms for estimating water quality from satellite remote sensing data. Multi-temporal Landsat-8 satellite imagery was used to spatially and temporally map the surface water quality of Lake Sentani. In-situ data showed temperature, DO, pH, TDS, and water transparency ranging from 29.3°C to 31.8°C, 1.7 mg/L to 7.9 mg/L, 7.75 to 8.64, 23 mg/L to 46 mg/L, and 2.28 m to 2.94 m, respectively. Only water transparency does not meet the quality standards for water quality (class 1 and class 2), while the other parameters meet class 1 to class 3 quality standards for surface water samples. The accuracy of the algorithm used and the resulting one has a low Mean Absolute Error value, namely 0.81 (temperature), 0.37 (DO), 4.84 (TDS), and 0.12 (water transparency). The temperature and TDS concentrations from the satellite imagery data ranged from 28.110°C to 33.918°C, and 7.829 mg/L to 102.702 mg/L, respectively. Both of these parameters still meet water quality standards. The DO concentrations ranged from 2.228 mg/L to 12.562 mg/L, and water transparency ranged from 0.424 m to 3.151 m. The concentration of DO and water transparency do not meet quality standards in several parts of Lake Sentani, especially in November and August.
EN
The mangrove ecological services as carbon sinks and storage are very useful in the efforts to mitigate global warming and climate change. In this study, the above and below-ground biomass, carbon stock, as well as carbon sequestration by the mangroves in Demta Bay, Papua Province, Indonesia were estimated. Allometric equations were used to determine the mangrove biomass in 36 observation plots. The biomass value was used to determine carbon stock and estimate carbon sequestration. Nine mangrove species were found in Demta Bay, with the contribution of mangrove species to biomass (AGB and BGB) in the following order: Rhizophora apiculata > Rhizophora mucronata > Bruguiera gymnorhiza > Bruguiera cylindrica > Heritiera Littoralis > Xylocarpus molucensis > Rhizophora stylosa > Avicennia marina > Sonneratia caseolaris. The average mangrove biomass was estimated at 174.20 ± 68.14 t/ha (AGB = 117.62 ± 45.68 t/ha and BGB = 56.58 ± 22.49 t/ha). The carbon stocks in mangroves at the Ambora site were higher than the Tarfia and Yougapsa sites, averaging 123.57 ± 30.49 t C/ha, 81.64 ± 25.29 t C/ha, and 56.09 ± 39.03 t C/ha, respectively. The average carbon stock in the mangrove ecosystem of Demta Bay is estimated at 87.10 ± 34.07 t C/ha or equivalent to 319.37 ± 124.92 t CO2 e/ha. The results of this study indicate that the mangrove ecosystem in Demta Bay stores quite high carbon stocks, so it is necessary to maintain it with sustainable management. Therefore, climate change mitigation is not only done by reducing the carbon emission levels but also needs to be balanced by maintaining the mangrove ecosystem services as carbon sinks and sequestration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.