Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Magnetostrictive TbxHo0.8−xPr0.2Fe1.8Mn0.1 (0 ⩽ x ⩽ 0.20) alloys are prepared by arc-melting and subsequent annealing. The dopant of Pr/Mn introduced into RFe2 compounds effectively stabilizes the forming of single C15 Laves phase at ambient pressure. The easy magnetization direction (EMD) varies when Tb content increases, which is accompanied by a crystalstructural transition. EMD lies along ‹1 0 0› axis for x ⩽ 0.05, rotating to ‹1 1 1› axis for x ⩽ 0.12, with a tetragonal symmetry changing to a rhombohedral one. Magnetocrystalline-anisotropy compensation is obtained with the optimized composition of x = 0.12, shifting to the Tb-poor side in comparison to Pr/Mn-free counterpart. An enhanced effect on magnetoelastic properties is achieved in Tb0.12Ho0.68Pr0.2Fe1.8Mn0.1, which simultaneously possesses a low anisotropy and high magnetostriction performance, i.e. λs ~ 420 ppm, λ111 ~ 970 ppm, and a large low-field λa ~ 390 ppm/2 kOe, being 30 % higher than that of Pr/Mn-free compound. Combining low-cost light rare earth Pr with the lower Tb content, Tb0.12Ho0.68Pr0.2Fe1.8Mn0.1may make it promising solution in magnetostrictive applications.
EN
TbxHo0.9−xNd0.1(Fe0.8Co0.2)1.93/epoxy (0 ⩽ x ⩽ 0.40) composites are fabricated in the presence of a magnetic field. The structural and dynamic magnetoelastic properties are investigated as a function of both magnetic bias field Hbias and frequency f at room temperature. The composites are formed as textured orientation structure of 1–3 type with 〈1 0 0〉 preferred orientation for x ⩽ 0.10 and 〈1 1 1〉-orientation for x ⩾ 0.25. The composites generally possess insignificant eddy-current losses for frequency up to 50 kHz, and their dynamic magnetoelastic properties depend greatly on Hbias. The elastic modulus (E3H and E3B) shows a maximum negative ΔΕ effect, along with a maximum d33, at a relatively low Hbias ~ 80 kA/m, contributed by the maximum motion of non-180° domain-wall. The 1–3 type composite for x ⩾ 0.25 shows an enhanced magnetoelastic effect in comparison with 0 to 3 type one, which can be principally ascribed to its easy magnetization direction (EMD) towards 〈1 1 1〉axis and the formation of 〈1 1 1〉-texture-oriented structure in the composite. These attractive dynamic magnetoelastic properties, e.g., the low magnetic anisotropy and d33,max as high as 2.0 nm/A at a low Hbias ~ 80 kA/m, along with the light rare-earth Nd element existing in insulating polymer matrix, would make it a promising magnetostrictive material system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.