Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present work investigated the microstructural feature, mechanical properties, and residual stress variation for the dissimilar welded joints (DWJs) of P92 and AISI 304L steel. The multi-pass DWJs were attempted for narrow gap geometry using the tungsten inert gas (TIG) welding process employing the ERNiCrMo-3 filler metal. The martensitic microstructure produced in the P92 HAZ region after welding is brittle due to quenched martensite and the dissolution of precipitates. Thus, the post-weld heat treatment (PWHT) known as tempering was carried out at 760 °C for a period of 2 h to get tempered martensitic microstructure and re-precipitation of dissolved precipitates. The radiographic examination and macrostructure analysis showed defect-free P92/304L SS DWJs. The weld metal showed the complete austenitic microstructure with a Ni weight percentage of 36%. However, segregation of the alloying elements along with the inter-dendritic areas and variation in grain growth during solidification was observed. There is columnar grain morphology at interface, cellular, and equiaxed in the center. The major segregation along the inter-dendritic areas was observed for Nb, Mo, Ti, and Cr that led to the formation of the carbides of type Mo6C, TiC, and NbC, which was confirmed from the energy dispersive spectroscopy (EDS) analysis. From the tensile test result, 304L SS base metal (BM) was inferred as the weakest region in P92/304L SS DWJs. The ultimate tensile strength (UTS) of the as-weld joint was about 626 MPa, along with fracture location in 304L SS base metal. The Charpy impact test results showed that the region with relatively poor impact toughness was austenitic ERNiCrMo-3 filler weld (57 J) which might be due to the segregation of the Nb and Mo along the inter-dendritic areas. However, the impact toughness of the ERNiCrMo-3 filler weld met the minimum requirement of 47J (EN ISO 3580:2017). The micro-hardness result showed that in the as-welded condition, the coarse grain heat affected zone (CGHAZ) has the highest micro-hardness value (340 HV) due to the high weight percentage of Cr and N resulting from the dissolution of M23C6 precipitates followed by the fine grain heat affected zone (FGHAZ, 270 HV), and the inter-critical heat affected zone (ICHAZ, 205 HV). After PWHT, the hardness value was decreased below the maximum allowable value of 265 HV due to the tempering of the martensite. The residual stresses developed in the case of the narrow groove design were less due to the less quantity of weld metal available for volumetric contraction in the case of the narrow groove geometry. The tensile stress was dominant in the weld fusion zone due to the volumetric contraction of the weld metal, while compressive stress was dominant in P92 HAZ because of the martensitic phase transformation.
EN
This research article reports the correlation between microstructure, mechanical properties, and residual stresses of dissimilar weld joints (DWJs) between P92 martensitic steel and 304L austenitic stainless steel (ASS). The groove geometry plays a vital role in DWJs. Thus the effect of groove geometry on mechanical and microstructural properties was also investigated. The V-shape and narrow shape groove profile were implemented for P92/304L SS DWJs. The microstructural characteristic, tensile strength, micro-hardness, Charpy impact toughness and residual stresses were evaluated for both the groove geometry in as-weld (AW) and post-weld heat treatment (PWHT) (760 °C, 2 h) state. Microstructural observations performed using an optical microscope (OM), and scanning electron microscope (SEM) showed that high temperature during the weld thermal cycle leads to the formation of the coarse grain heat-affected zone (CGHAZ), fine grain HAZ (FGHAZ), and inter-critical HAZ (ICHAZ) across the P92 HAZ. The ERNiFeCr-2 (Inconel 718) welding consumable wire (filler rod) of diameter 2.4 mm was used for this investigation. The ERNiFeCr-2 weld fusion zone showed a fully austenitic microstructure with the formation of the secondary phases due to the solidification segregation. The EDS and SEM area mapping results indicated that the secondary phases in the inter-dendritic region contain a higher amount of the Mo and Nb than the matrix region. The ultimate tensile strength (UTS) of the as-weld and PWHT tensile specimen of the P92/304L SS DWJs was 630 and 621 MPa, respectively, for V-groove geometry specimens and 620 and 629 MPa, respectively, for narrow groove geometry specimens. The tensile fracture was experienced at the interface between weld metal and 304L base metal, and the UTS value of DWJs was very close to the UTS of the 304L SS. The abrupt variation in the micro-hardness value of the CGHAZ (456HV0.5), FGHAZ (375HV0.5), and ICHAZ (221HV0.5) was noticed in the as-weld state due to their distinguish microstructure characteristics. After PWHT, the micro-hardness value of the CGHAZ (255HV0.5), FGHAZ (236HV0.5), and ICHAZ (207HV0.5) was below the maximum allowable value of 265HV0.5 for P92 material because of the tempering of the martensite. The Charpy impact test indicated that the ERNiFeCr-2 weld fusion zone has a low toughness value of 33 J (AW) and 25 J (PWHT) for V-groove design and 35 J (AW) and 28 J (PWHT) for narrow groove design than that of the P92 and 304L parent metal. The impact toughness of the ERNiFeCr-2 filler weld was below the minimum requirement of 47 J (EN ISO 3580:2017). The tensile residual stresses were generated in the weld fusion zone due to the volumetric contraction during the solidification. The residual stresses developed in the case of the narrow groove design were less than that for the V-groove design due to the less quantity of weld metal available for volumetric contraction in the case of the narrow groove geometry. From comparing mechanical and microstructural properties obtained for V-groove and narrow groove geometry DWJs, it was found that narrow groove design reduces the overall heat affected zone span, and it requires less welding time and less heat input.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.