Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Metallic fuel slugs containing rare-earth (RE) elements have high reactivity with quartz (SiO2) molds, and a reaction layer with a considerable thickness is formed at the surface of metallic fuel slugs. The surface characterization of metallic fuel slugs is essential for safety while operating a fast reactor at elevated temperature. Hence, it is necessary to evaluate the surface characteristics of the fuel slugs so that chemical interaction between fuel slug and cladding can be minimized in the reactor. When the Si element causes a eutectic reaction with the cladding, it deteriorates the metallic fuel slugs. Thus, it is necessary to examine the characteristics of the surface reaction layer to prevent the reaction of the metallic fuel slugs. In this study, we investigated the metallurgical characteristics of the surface reaction layer of fabricated U-10wt.%Zr-Xwt.%RE (X = 0, 5, 10) fuel slugs using injection casting. The results showed that the thickness of the surface reaction layer increased as the RE content of the metallic fuel slugs increased. The surface reaction layer of the metallic fuel slug was mainly formed by RE, Zr and the Si, which diffused in the quartz mold.
EN
This study investigated the high temperature oxidation property of SiC coated layer fabricated by aerosol deposition process. SiC coated layer could be successfully manufactured by using pure SiC powders and aerosol deposition on the Zr based alloy in an optimal process condition. The thickness of manufactured SiC coated layer was measured about 5 μm, and coating layer represented high density structure. SiC coated layer consisted of α-SiC and β-SiC phases, the same as the initial powder. The initial powder was shown to have been crushed to the extent and was deposited in the form of extremely fine particles. To examine the high temperature oxidation properties, oxidized weight gain was obtained for one hour at 1000°C by using TGA. The SiC coated layer showed superior oxidation resistance property than that of Zr alloy (substrate). The high temperature oxidation mechanism of SiC coated layer on Zr alloy was suggested. And then, the application of aerosol deposited SiC coated layer was also discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.