Introduction: Quantification of lung involvement in COVID-19 using chest Computed tomography (CT) scan can help physicians to evaluate the progression of the disease or treatment response. This paper presents an automatic deep transfer learning ensemble based on pre-trained convolutional neural networks (CNNs) to determine the severity of COVID -19 as normal, mild, moderate, and severe based on the images of the lungs CT. Material and methods: In this study, two different deep transfer learning strategies were used. In the first procedure, features were extracted from fifteen pre-trained CNNs architectures and then fed into a support vector machine (SVM) classifier. In the second procedure, the pre-trained CNNs were fine-tuned using the chest CT images, and then features were extracted for the purpose of classification by the softmax layer. Finally, an ensemble method was developed based on majority voting of the deep learning outputs to increase the performance of the recognition on each of the two strategies. A dataset of CT scans was collected and then labeled as normal (314), mild (262), moderate (72), and severe (35) for COVID-19 by the consensus of two highly qualified radiologists. Results: The ensemble of five deep transfer learning outputs named EfficientNetB3, EfficientNetB4, InceptionV3, NasNetMobile, and ResNext50 in the second strategy has better results than the first strategy and also the individual deep transfer learning models in diagnosing the severity of COVID-19 with 85% accuracy. Conclusions: Our proposed study is well suited for quantifying lung involvement of COVID-19 and can help physicians to monitor the progression of the disease.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Major Depressive Disorder (MDD) is one of the leading causes of disability worldwide. Prediction of response to Selective Serotonin Reuptake Inhibitors (SSRIs) antidepressants in patients with MDD is necessary for preventing side effects of mistreatment. In this study, a deep Transfer Learning (TL) strategy based on powerful pre-trained convolutional neural networks (CNNs) in the big data datasets is developed for classification of Responders and Non-Responders (R/NR) to SSRI antidepressants, using 19-channel Electroencephalography (EEG) signal acquired from 30 MDD patients in the resting state. Multiple time-frequency images are obtained from each EEG channel using Continuous Wavelet Transform (CWT) for feeding into pre-trained CNN models that are VGG16, Xception, DenseNet121, MobileNetV2 and InceptionResNetV2. Our plan is to adapt and fine-tune the weights of networks to the target task with the small-sized dataset. Finally, to improve the recognition performance, an ensemble method based on majority voting of outputs of five mentioned deep TL architectures has been developed. Results indicate that the best performance among basic models achieved by DenseNet121 with accuracy, sensitivity and specificity of 95.74%, 95.56% and 95.64%, respectively. An Ensemble of these basic models created to surpass the accuracy obtained by each individual basic model. Our experiments show that ensemble model can gain accuracy, sensitivity and specificity of 96.55%, 96.01% and 96.95%, respectively. Therefore, proposed ensemble of TL strategy of pre-trained CNN models based on WT images obtained from EEG signal can be used for antidepressants treatment outcome prediction with a high accuracy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.