Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present paper, elemental Fe, Cr and Ni powders were used to fabricate nano-structured duplex and ferritic stainless steel powders by using high energy planetary ball milling. We have studied the effect of milling atmosphere like wet (toluene) and dry (argon) milling of elemental Fe-18Cr-13Ni (duplex) and Fe-17Cr-1Ni (ferritic) powders for 10 h in a dual drive planetary mill. Stearic acid of 1wt.% was added during milling to avoid agglomeration. The dry and wet milled duplex and ferritic stainless steel powders were characterized by XRD, SEM and particle size analysis techniques. We have found that both the milling atmospheres have great influence in controlling the final particle morphology, size and phase evolution during milling. It was reported that dry milling is more effective in reducing particle size than the wet milling. The Nelson-Riley method of extrapolation was used to calculate the precise lattice parameter and Williamson-Hall method was used to calculate the crystallite size and lattice strain of both the stainless steel milled in argon atmosphere. Dry milled duplex and ferritic stainless steel were then consolidated by conventional sintering method at 1100, 1200 and 1300°C temperatures under argon atmosphere for 1 hour.
EN
Diamond-like carbon (DLC) films were electrochemically deposited onto indium tin oxide (ITO) substrates using acetic acid and deionized water as electrolyte at low deposition voltages (2.4 V and 60 V). The transmittance of the films was investigated by UV spectrometry. Transmittance measurements versus wavelength revealed that the films transmit 86 % to 89 % light in visible region and band gap of the films varies between 3.87 eV and 3.89 eV. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used for structural characterization to evaluate surface morphology of the DLC films. The grain size and the surface roughness increased for the films prepared at higher deposition potential, while their measured average height decreased. The mechanical properties (hardness H and elastic modulus Er) were determined from load-displacement curves which were obtained by using nanoindentation method. Hardness and elastic modulus of the films increased as the deposition voltage of the films increased from 2.4 V to 60 V.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.