Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In 2010 a collaborative working group was formed under the professional associations: International Association of Geodesy (IAG WG4.2.5) and International Federation of Surveys (FIG WG5.5). Entitled ubiquitous positioning, this working group aims to harness and develop existing research outputs available internationally in this research domain. Our goal over the next four years is to provide an online resource for academic and industry professionals, who can use these research outputs thereby reducing duplication and facilitating more rapid progress in the development of ubiquitous positioning systems. This paper presents a summary of the research activities and results of the working group to date. In particular, it presents the results of extensive testing to characterize the performance of a range of low-cost MEMS inertial sensors. The test scenarios, data acquisition software, processing tools and results obtained will be fully described and presented. The performance of these sensors in augmenting GNSS positioning is also presented using results obtained from a combination of loosely and tightly coupled Kalman filters. Finally, the future plans for the working group over the next four years and opportunities for wider collaboration will be discussed.
EN
Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an intervehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.