The traditional separation process of pyrite and marmatite is carried out under highly alkaline conditions. Therefore, a large amount of lime is demanded and the zinc recovery cannot be guaranteed. However, under weakly alkaline conditions, copper-activated pyrite has good floatability, which is difficult to separate from marmatite. In this paper, ammonium chloride (NH4Cl) is used for depressing the flotation of copper-activated pyrite to achieve the separation of these two minerals under weakly alkaline environment. The flotation tests show that NH4Cl can significantly reduce the floatability of pyrite in weakly alkaline conditions. The results of adsorption tests and X-ray photoelectron spectroscopy (XPS) analyses indicate that NH4Cl can obviously change the composition of pyrite surface by increasing the content of iron/copper hydroxide and reducing the content of copper sulfides. Calculation of the solution composition demonstrates that the addition of NH4Cl results in the occurrence of Cu(NH3)n2+ and the pH buffering property. Based on these results, it can be concluded that the depression of NH4Cl on copper activated pyrite is mainly derived from two aspects: 1) the pH buffering property of the conjugated acid-base pair (NH4+/NH3) can impede the decline of OH- concentration, which results in more hydroxide adsorbed on pyrite; 2) NH3 (aq) competes with the pyrite surface to consume Cu2+through complexation, which causes a reduction in the amount of copper sulfides formed on the pyrite surface.
Naturally, most of the cassiterite co-exists with sparingly soluble calcite, which makes it difficult to be fully utilized. Due to the adsorption of calcium ions dissolved from calcite, surface properties of cassiterite and its floatability can be influenced. Adsorption tests show calcium ions can adsorb on cassiterite surface. In the presence of Ca2+, the zeta potentials of cassiterite shift to more positive values and the isoelectric point of cassiterite increases from pH 4.4 to pH 4.9. XPS results show that after calcium ions treatment, a strong calcium spectral peak at 347.65 eV is detected on the cassiterite surface and the chemical circumstance of oxygen atoms is changed. The presence of Ca2+ can significantly depressed the flotation behavior of cassiterite with salicylhydroxamic acid (SHA) as collector. Its recovery is decreased by 26.03% compared to that without Ca2+ at SHA dosage of 8.0×10-4 mol/dm3. When increasing SHA concentration to 9.0×10-4 mol/dm3 and above, the depression effect is partly compensated and the recovery rises by about 20%. Contact angle values of cassiterite measured by the bubble method correspond well to the flotation performance. Hence the depression mechanism of Ca2+ in cassiterite flotation can be interpreted in two aspects: 1) the consumption of SHA due to complexation reactions in pulp; 2) a decrease of effective adsorption site for SHA on cassiterite because of the adsorption of Ca2+.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.