Magnesium-based MMCs are widely used in structural-based applications due to their lightweight, high hardness, corrosion and wear resistance. Also, machining is an important manufacturing process that is necessary to ensure dimensional accuracy and produce intricate shapes. In this context, the machining of Magnesium based metal matrix composites is undertaken to study the impact of the cutting parameters on the machinability behaviour. In this work, turning of pure Mg/SiCp on a Lathe is done and an in-depth assessment on the machining forces, machined surface quality, chip microstructure, and tool morphology has been carried out using TiAlN coated tooling insert. The analysis revealed that the thrust force decreased due to the thermal softening of the matrix meanwhile the feed force also followed the similar trend at higher cutting speeds because of the minimized built-up edge and cutting depth whereas principal cutting force was inconsistent at higher cutting speeds. The surface finish was better at high cutting speed - low feed combination. The chip microstructure revealed that gross fracture propagation at the free surface and variations in the shear bands have occurred at different cutting speeds. Tool studies using SEM analysis revealed wear modes like chipping and built-up edge at low cutting speeds, but with a reduced impact at intermediate cutting conditions, whereas abrasion wear was observed predominantly in the tool nose at higher cutting speeds.
Carbon fiber reinforced polymeric (CFRP) composite materials are widely used in aerospace, automobile and biomedical industries due to their high strength to weight ratio, corrosion resistance and durability. High speed machining (HSM) of CFRP material is needed to study the impact of cutting parameters on cutting forces and chip microstructure which offer vital inputs to the machinability and deformation characteristics of the material. In this work, the orthogonal machining of CFRP was conducted by varying the cutting parameters such as cutting speed and feed rate at high cutting speed/feed rate ranges up to 346 m/min/ 0.446 mm/rev. The impact of the cutting parameters on cutting forces (principal cutting, feed and thrust forces) and chip microstructure were analyzed. A significant impact on thrust forces and chip segmentation pattern was seen at higher feed rates and low cutting speeds.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.