In the present study, the reliability evaluation application during design, maintenance and repair phases have been investigated for the girder of a ship’s hull. The objective of the project was to develop reliability-based methods which are to be used for the design of ship structures, in particular by the calibration of the safety factors in the design rules. In order to evaluate the structural strength, the extended model of the ultimate limit state of the hull-girder, regarding corrosion and fatigue defects, has been used based using a time-dependent probabilistic analysis. Time-dependent reliability has been evaluated using the required minimum elastic section modulus; in the case of fatigue in a ship’s deck this process has been done using mechanical fracture and the S-N curve. The results from the reliability evaluation using the Monte-Carlo simulation method and First-order reliability methods (FORM), indicated that these two methods agreed well. Analysis of the corrosion defect reliability showed a decrease of the structure’s reliability during its lifetime; hence it is possible to use the reliability criteria in the design phase in order to achieve a better perception of the structure’s operation during its lifetime with regard to environmental conditions. A comparison between the fatigue analysis results showed that the fracture mechanics method gave more conservative results compared to the S-N curve method, because of the way it considers early crack size.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.