Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Characterization of shear stress distribution on a flat roof with solar collectors
EN
In the search for new renewable energy sources, photovoltaic systems and solar thermal collectors have become more common in buildings. With increased efficiency and demand for energy, solar power has also become exploitable at higher latitudes where snow is a major load on buildings. For flat roofs, one usually expects approximately 80% of the snow to be eroded off the roof surface. Installing solar panels would change this since the flow pattern and wind conditions on the roof are affected by their presence. This study shows the erosion of sand particles from underneath solar panels of various configurations associated with different wind velocities. The pattern of erosion is used to determine the relative friction velocity, u*REL, of the wind on the roof. This value is the friction velocity on the roof relative to the friction velocity on a flat roof without solar panels. The experiments, conducted in a wind tunnel, show that the area where u*REL is 0 and where it is expected that sand and snow will accumulate in case of an upwind particle source and decrease with increasing distances between roof and solar panel. It is also shown that a larger gap between the solar panel and roof surface creates larger erosion zones, where u*REL > 1 for both wind directions. Since the erosion is closely linked to the air flow under the solar panels, and that higher air velocity increases the erosion, it is likely that a larger solar panel, extending higher into the free air flow would be desirable to avoid snow accumulation on a flat roof with solar panels. If the solar panel has large enough dimensions, the solar panels can be used as a deflector to decrease snow accumulation on flat roofs. With solar panels of the size in the current experiments, a building with a length smaller than the equivalent of x/L = 0.3 would have u*REL > 1 on most of the roof surface and would thus likely have a lower snow load than an equivalent float roof without solar panels.
PL
Wraz ze zwiększoną efektywnością i zapotrzebowaniem na energię, energia słoneczna stała się możliwa do wykorzystywania w większych szerokościach geograficznych, gdzie śnieg jest głównym obciążeniem budynków. W przypadku płaskich dachów, można się spodziewać, że 80% śniegu jest zwiewane z jego powierzchni. Po zainstalowaniu paneli słonecznych, sytuacja ulega zmianie, gdyż przepływ powietrza i warunki wiatrowe na dachu zmieniają się. Praca przedstawia erozję ziaren piasku spod paneli słonecznych, w różnych układach, przy różnych prędkościach wiatru. Forma erozji jest wykorzystywana do wyznaczania względnej prędkości tarciowej, u*REL, wiatru na dachu, względem dachu bez paneli. Doświadczenia w tunelu aerodynamicznym wskazują obszar, gdzie u*REL = 0 i gdzie piasek i śnieg będą się zbierać w przypadku źródła ziaren w napływie i zmniejszać się wraz ze wzrostem odległości między dachem i panelem słonecznym. Większy odstęp między panelem i dachem przyczynia się do zwiększenia obszarów erozji, gdzie u*REL > 1, dla obu kierunków wiatru. Ponieważ erozja jest silnie związana z przepływem pod panelami, a większa prędkość powietrza powoduje wzrost erozji, prawdopodobne jest, że większy panel słoneczny, sięgający wyżej w przepływie powietrza, jest pożądany, aby uniknąć gromadzenia się śniegu na powierzchni dachu. Jeśli panel ma wystarczająco duże wymiary, może zostać wykorzystany do zmniejszenia gromadzenia się śniegu na dachu. W przypadku paneli słonecznych w rozmiarach użytych w badaniach, budynek o długości mniejszej niż x/L = 0,3 ma u*REL > 1 na większości powierzchni dachu i będzie charakteryzować się mniejszym obciążeniem śniegiem, niż na odpowiednim dachu bez paneli słonecznych.
2
Content available remote Applications of "snowind" engineering – climatic wind tunnel methods
EN
Transport and deviation of snow by wind induce many constraints on buildings, vehicles and industrial systems. A selection of questions from snow-wind engineering are presented in the paper. The experimental method that was undertaken to investigate these questions makes use of a large climatic wind tunnel, partly designed to address snow engineering problems at full scale: snow penetration in buildings, into ventilation systems of buildings and vehicles and snow or ice accretions on structures.
PL
Transport i przemieszczanie śniegu przez wiatr powodują wiele ograniczeń dotyczących budynków, pojazdów i systemów przemysłowych. W niniejszej pracy przedstawiono kilka problemów z zakresu inżynierii wiatrowo-śniegowej. W celu uzyskania na nie odpowiedzi użyto metod badawczych wykorzystujących duży tunel klimatyczny, zaprojektowany częściowo z przeznaczeniem do rozwiązywania zagadnień inżynierii śniegowej w skali naturalnej, np.: przedostawania się śniegu do budynków, systemów wentylacyjnych budynków i pojazdów oraz gromadzenia się śniegu lub lodu na konstrukcjach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.