We consider a parametric nonlinear Robin problem driven by the sum of a p-Laplacian and of a q-Laplacian ((p, q)-equation). The reaction term is (p — 1)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.
We consider a nonlinear nonhomogeneous Robin equation driven by the sum of a p-Laplacian and of a q-Laplacian ((p,q)-equation) plus an indefinite potential term and a parametric reaction ol logistic type (superdiffusive case). We prove a bilurcation-type result describing the changes in the set ol positive solutions as the parameter λ > 0 varies. Also, we show that lor every admissible parameter λ > 0, the problem admits a smallest positive solution. Keywords: positive solutions, superdiffusive reaction, local minimizers, maximum principle, min
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.