For irrigation in agriculture, water is a natural resource. Recycling water use is vital for the sustainable development of ecological environment and for resource conservation. Different substances that are thought to be pollutants and contribute to the deterioration of water quality are present in the wastewater from daily life and industrial activity. This research propose novel method in agricultural water management using feature extraction as well as classification based on DL methods. Inputs are collected as agriculture field water management as well as processed for noise removal, normalization and smoothening. Processed input data features are extracted utilizing kernel convolutional component analysis network. The extracted features has been classified using Quadratic reinforcement NN. Experimental analysis are carried out in terms of accuracy, precision, recall, positive predictive value, RMSE and mAP. Proposed technique attained accuracy of 92%, precision of 86%, recall of 65%, positive predictive value of 71%, RMSE of 55%, MAP of 51%.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.