An Nd:YAG pulsed laser was employed to irradiate a nitrogen gas-puff target. The interaction gives rise to the emission of soft X-ray (SXR) radiation in the ‘water window’ spectral range (λ = 2.3÷4.4 nm). This source was already successfully employed to perform the SXR microscopy. In this work, a Silicon Carbide (SiC) detector was used to characterize the nitrogen plasma emission in terms of gas-puff target parameters. The measurements show applicability of SiC detectors for SXR plasma characterization.
Nanostructured targets, based on hydrogenated polymers with embedded nanostructures, were prepared as thin micrometric foils for high-intensity laser irradiation in TNSA regime to produce high-ion acceleration. Experiments were performed at the PALS facility, in Prague, by using 1315 nm wavelength, 300 ps pulse duration and an intensity of 1016 W/cm2 and at the IPPLM, in Warsaw, by using 800 nm wavelength, 40 fs pulse duration, and an intensity of 1019 W/cm2. Forward plasma diagnostic mainly uses SiC detectors and ion collectors in time of fl ight (TOF) confi guration. At these intensities, ions can be accelerated at energies above 1 MeV per nucleon. In presence of Au nanoparticles, and/or under particular irradiation conditions, effects of resonant absorption can induce ion acceleration enhancement up to values of the order of 4 MeV per nucleon.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.