Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigates mechanical properties of accelerated cooled and self-tempered (AC-ST) H-type S275JR quality steel sections in HEA120 and HEB120 sizes. The cooling process is conducted with a specially manufactured system that sprays a coolant consisting of a water + compressed air mixture on the section surfaces. Cooling times were applied as 10 and 30 seconds using 4 and 12 bar compressed air + water at an average constant pressure of 5 bar and a constant flow rate of 0.08 kg/s. In the HEA120 sections, the highest cooling rate was obtained with 83°C/s in the web region under the cooling time of 30 s and the air pressure cooling condition of 12 bar. At the cooling rate up to 6°C/s, the microstructure is transformed to acicular ferrite and polygonal ferrite phase from Ferrite+Pearlite. But upper bainite phase was formed at a cooling rate of 30°C/s, and a small amount of martensite and lower bainite microstructures were observed at a cooling rate of 60°C/s and above. The hardness in the untreated sections, in the range of 106-120 HB, was increased to 195 HB at a cooling rate of 83 C/s in the web region of the HEA120 section. For a cooling rate of 23°C/s, the maximum compressive residual stresses of -352 MPa are measured in the crotch region of the HEB120. And for a cooling rate of 6°C/s, the maximum tensile residual stresses of 442 MPa were determined in the flange region of the HEA120 section.
EN
In this study, the nominal composition of Cu-2.5Ti alloy was thermally treated to obtain homogenized, aged, and 40% prior cold-rolled+ aged samples. The hardness, wear behavior, and microstructure of samples were investigated. The reciprocating wear tests were performed under four different loads under dry and 3.5%NaCl corrosive environments. The alloy reached its highest hardness value of 8 hours for the aged sample. The hardness value of the sample that was homogenized then cold-rolled by 40% and aged was found higher than the other samples. A decrease in the wear rates in dry conditions was observed in homogenized, aged and cold-rolled and aged samples, respectively. This decrease was more in the corrosive environment. Studies can be advanced by examining the wear behavior at different alloy ratios. The effects of different alloying elements and the ratio of cold-rolled before or after aging can also be investigated for future research.
EN
In this study, microstructure, mechanical, corrosion and corrosive wear properties of Mg-xAg the as-cast and extruded alloys (x: 1, 3 and 5 wt.%Ag) were investigated. According to the experimental results, as the amount of Ag added in the casting alloys increases, the secondary phases (Mg4Ag, Mg54Ag17) emerging in the structure have become more clarified. Furthermore, it was observed that as the amount of Ag increased, the grain size decreased and thus the mechanical properties of the alloys increased. Similarly, the extrusion process enabled the grains to be refined and the mechanical properties to be increased. As a result of the in vitro tests performed, the Mg-1Ag exhibited very bad corrosion properties compared to other alloys. On the other hand, according to corrosive wear tests results, a high wear rate and friction coefficient were found for Mg-5Ag alloys.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.