The state of the art in Sentiment Analysis is defined by deep learning methods, and currently the research efforts are focused on improving the encoding of underlying contextual information in a sequence of text. However, those neural networks with a higher representation capacity are increasingly more complex, which means that they have more hyper-parameters that have to be defined by hand. We argue that the setting of hyper-parameters may be defined as an optimisation task, we thus claim that evolutionary algorithms may be used to the optimisation of the hyper-parameters of a deep learning method. We propose the use of the evolutionary algorithm SHADE for the optimisation of the configuration of a deep learning model for the task of sentiment analysis in Twitter. We evaluate our proposal in a corpus of Spanish tweets, and the results show that the hyper-parameters found by the evolutionary algorithm enhance the performance of the deep learning method.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.