Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 40

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
PL
System naftowy z gazem w centrum basenu (BCGS) ma charakter niekonwencjonalnych, regionalnych akumulacji gazu ziemnego. W systemie takim strefa głęboko zalegających zwięzłych skał zbiornikowych, nasyconych gazem, w górę powierzchni strukturalnych przechodzi stopniowo w strefę o konwencjonalnym wykształceniu, nasyconą wodami złożowymi. BCGS wymaga, by skała zbiornikowa nadścielała, lub przeławicała się z dojrzałymi skałami macierzystymi, zaś mechanizmem uszczelnienia jest niska przepuszczalność formacji zbiornikowej. Nie wymaga on obecności pułapek złożowych. Model ten jest tu użyty w odniesieniu do karbońskiego basenu górnośląskiego (BGŚ), który pozostaje globalnie unikalnym przykładem basenu nieomal niezbadanego pod kątem możliwości występowania złóż węglowodorów. Model ten nie może być obecnie bezpośrednio zweryfikowany z uwagi na brak odpowiednio głębokich otworów wiertniczych w kluczowej, centralnej części BGŚ (rejon Rybnik–Żory–Tychy–Mikołów). Zakłada on zwięzłe wykształcenie skał potencjalnie zbiornikowych na głębokościach 3500÷5000 m. Rolę skał zbiornikowych pełnić w tym przypadku mogą pakiety piaskowców serii paralicznej, a w mniejszym stopniu również górnośląskiej serii piaskowcowej, cechujące się dużą miąższością i znaczną regionalną rozciągłością. Utwory tych serii w centralnej części BGŚ zawierają ponadto pokłady węgla kamiennego oraz pakiety łupków węglowych, stanowiące efektywną skałę macierzystą dla gazu ziemnego. Główny czynnik ryzyka poszukiwawczego stanowi czas generowania węglowodorów: im starszy tym większe prawdopodobieństwo rozformowania akumulacji gazu ziemnego. W przypadku waryscyjskiego wieku generowania gazu ziemnego w BGŚ prawdopodobieństwo rozformowania jego akumulacji typu BCGS należy uznać za wysokie. Ponadto elementami ryzyka poszukiwawczego są możliwość przegrzania skał macierzystych, a także duży zakres niepewności co do wykształcenia własności petrofizycznych skał zbiornikowych. Możliwe, prognostyczne zasoby wydobywalne tego typu akumulacji w BGŚ wstępnie określono na około 100÷250 mld m3. Weryfikacja omawianego modelu oraz związanych z nim zasobów gazu zamkniętego warunkowana jest odwierceniem głębokich otworów poszukiwawczych.
EN
Basin Centered Gas System (BCGS) is characteristic of numerous unconventional, pervasive tight gas accumulations, where deep gas-saturated tight reservoir passes up-section into its water-saturated conventional zone. In such a system tight reservoir overlies or interbeds with mature source rocks, while the sealing mechanism is the low permeability of the reservoir formation. The system does not require the presence of hydrocarbon traps. This model is applied here to the Carboniferous Upper Silesian Basin (USB), which is one of the few onshore sedimentary basins in the World which has not been explored for oil and gas. The concept cannot be currently verified due to the lack of deep boreholes in the central part of the USB (region: Rybnik–Żory–Tychy–Mikołów). It requires tight reservoir properties at depths of 3500÷5000 m. The reservoir formations are the sandstone of the Paralic Series, and to a lesser degree also of the Upper Silesian Sandstone Series, characterized by immense thickness and considerable lateral reach. Both Series at that depth interval contain also coal seams and coal shale, being effective gas source rock. The key exploration risk is the timing of gas generation: the older the generation, the higher the risk of gas release. In the case of the Variscan generation, recent preservation gas in the form of BCGS accumulations is unlikely. Other risk factors are possible source rocks overmaturation and uncertainty as for the reservoir’s petrophysical properties. Possible prospective resources of the BCGS accumulations in the USB were preliminarily estimated for approx. 100÷250 Bcm. Validation of the model of the BCGS being developed in the USB, as well as verification of the resources related to it, requires drilling new deep exploration wells.
EN
Tectonic subsidence history was analysed for the Ediacaran-Paleozoic Volyn-Podillya-Moldavia Basin, by performing 1D backstripping for 21 boreholes located in western and SW Ukraine, Moldova and NE Romania. Tectonic subsidence history is coherent across the area studied. Development of the basin commenced with an Ediacaran phase of extension, initiated with the emplacement of rift-related volcanic rocks and associated with rapid syn-rift tectonic subsidence. During this event, tectonic subsidence increased towards the SW, i.e. towards the edge of the East European Craton, where the Ediacaran rift zone was located. At that time, a rift developed along the whole SW margin of the East European Craton from Scandinavia to the Black Sea. Development of this large extensional basin was related to the latest stages of break-up of the Precambrian supercontinent Rodinia/Pannotia and ultimately the formation of the Tornquist Ocean. The latest Ediacaran to Late Ordovician tectonic subsidence pattern was characteristic of the post-rift thermal sag stage of extensional basins. The SW margin of the newly formed Baltica, including the area studied, became a passive continental margin. The late Cambrian uplift and erosion was presumably related to a far-field effect of contractional events or intra-plate stresses. Since the Late Ordovician, a gradual change to a collisional tectonic setting is observed across the SW margin of Baltica. In the study area, this is indicated by a systematic increase in subsidence rate from Wenlock to Early Devonian time, creating subsidence curves with convex shapes typical of foreland basin development. The Silurian to Early Devonian Volyn-Podillya-Moldavia Basin is interpreted here as a flexural foredeep related to a Caledonian collision zone located further to the SW. The prominent diachroneity in the initiation of the foredeep basin development at a scale of the whole SW margin of Baltica is coherent with a model of oblique collision of Avalonia and Baltica. During the Pragian-Emsian, the basin was part of a system of post-collisional Old Red basins, with subsidence driven presumably by lithospheric isostatic imbalance resulting from the Caledonian collision and development of an accretionary wedge. Middle to Late Devonian short-term phases of rapid subsidence in small depocentres might be regarded as an indication of a transtensional tectonic regime.
PL
Praca przedstawia wykorzystanie metodyki szacowania zasobów złóż niekonwencjonalnych zaproponowaną przez United States Geological Survey na przykładzie wybranych obszarów basenu pomorskiego i lubelskiego. Metoda ta pokazuje podejście probabilistyczne do oszacowania zasobów i bazując na analizie Monte Carlo, pozwala na oszacowanie zasobów technicznie wydobywalnych. Jako dane wejściowe wykorzystane zostały rozkłady takich parametrów, jak miąższość netto, powierzchnia obszaru produktywnego, całkowita zawartość węgla organicznego, refleksyjność witrynitu, typ kerogenu, rodzaj węglowodorów. Zasoby oszacowane dla basenu pomorskiego to 4 036 t ropy/km2 oraz 31 mln m3 gazu/km2, dla basenu lubelskiego przy założeniu TOC > 1,5% – 20 000 t ropy/km2 oraz 17,4 mln m3 gazu/km2.
EN
The paper presents the application of USGS methodology for assessing unconventional continuous resources on the example of the Paleozoic strata in Pomerania and Lublin Basin. The aim of this methodology is to estimate the volumes of technically recoverable oil and gas resources from a continuous accumulation using probabilistic methods such as Monte Carlo simulation. Key assumption of this methodology is that the resource assessment is fundamentally based on geology and combines geological hypothesis and uncertainties. Assessed resources for Baltic Basin amounted 4 036 tonnes of oil /km2 and 31 mln m3 of natural gas/km2. For Lublin Basin with TOC > 1,5% – 20 000 tonnes of oil/km2 and 17,4 mln m3 of natural gas/km2.
PL
W centralnej części basenu lubelskiego opracowano trójwymiarowy model utworów syluru, ordowiku i kambru. Model strukturalny obejmuje kompleksy pridolu – ludlowu, wenloku, landoweru, aszgilu, karadoku, lanwirnu, arenigu, tremadoku oraz kambru. Model strukturalny dowiązano do 76 odwiertów, a do jego opracowania wykorzystano archiwalne mapy miąższości i strukturalne oraz interpretację sejsmiki. W przestrzeni 3D wymodelowano zmienność refleksyjności witrynitu, co pozwoliło określić zasięg strefy okna gazowego, kondensatowego i ropnego. Modele zawartości węgla organicznego – współczesnej i pierwotnej, gęstości RHOB, oraz potencjału generacyjnego wyrażonego jako indeks wodorowy HI, pozwoliły oszacować bazowy model zasobów perspektywicznych z wykorzystaniem zmodyfikowanej metody Schmokera.
EN
In the presented study of central part of Lublin Basin 2D seismic, well data, laboratory measurements, well logs and results of 1D modelling in BasinMod were used as quantitative input for further Petrel based 3D modeling and resources assessment. Structural framework of the model comprises 9 surfaces (from the top of Silurian to the top of Cambrian), adjusted to stratigraphy of 76 wells. Modeled parameters involve vitrinite reflectance (Ro), present and original TOC, shale and brittle minerals volumes, RockEval S1 + S2 and HI parameters, bulk density (RHOB), porosity (PHI) and water saturation model. Models are based on laboratory data and well logs interpretation in 15 wells. Using reflectivity model oil, liquid and gas windows were established, and applying modified Schmoker method equations preliminary resources assessment for each window was completed.
PL
Badania nad ilościowym składem mineralnym łupków są prowadzone od ponad 100 lat, a ich wyniki nabrały praktycznego znaczenia w ostatnich latach, gdy skały łupkowe zaczęły być szczegółowo badane pod kątem możliwości pozyskiwania z nich węglowodorów (tzw. niekonwencjonalne złoża ropy naftowej i gazu ziemnego). Skład mineralny łupków jest niezwykle ważnym parametrem, mającym zasadniczy wpływ na szereg właściwości fizycznych i chemicznych skał. Wzajemne proporcje minerałów o różnym składzie chemicznym, wielkościach ziaren, pokroju oraz właściwościach powierzchniowych decydują o porowatości skały, jej przepuszczalności, teksturze, a co za tym idzie – podatności na szczelinowanie i działanie chemiczne roztworów szczelinujących na skały. W pracy przedstawiono wyniki badań składu ilościowego utworów sylursko-ordowickich z basenu bałtyckiego (północna Polska). W badaniach wykorzystano obserwacje mikroskopowe oraz proszkowe badania rentgenodyfrakcyjne, uzupełnione o ilościową analizę Rietvelda. Badania potwierdziły, że analiza Rietvelda może być skuteczną metodą określania ilościowego składu mineralnego badanych próbek. Dodatkowym atutem tej metody jest krótki czas rejestracji i opracowania wyników (w odróżnieniu od innych dostępnych analiz rentgenodyfrakcyjnych).
EN
Studies on the quantitative mineral composition of shales are being carried out for more than 100 years. The results have taken practical importance in recent years, when the shale rocks began to be examined in detail as a possible source of hydrocarbons (unconventional oil and gas). The mineral composition of shales is a very important parameter which has a significant impact on a number of physical and chemical properties of rocks. The relative proportions of minerals and different chemical composition, particle sizes, and surface properties determine the porosity and permeability of the rock, and thus its susceptibility to fracturing. This paper presents the results of the quantitative composition of Sylurian-Ordovician shales from the Baltic Basin (Northern Poland). The study used microscopic observations and X-Ray Powder Diffraction (XRD), supplemented with quantitative Rietveld analysis. Studies have confirmed that a Rietveld analysis can be an effective method for the quantitative determination of the mineral composition of the samples. Another advantage of this method is the short time recording and processing of the results (as opposed to other available XRD methods).
PL
Ostatnie lata w Polsce to olbrzymie zainteresowanie potencjalnymi złożami gazu ziemnego w sylurskich i ordowickich skałach drobnoziarnistych (typu shale gas). W Polsce, ze względu na brak wystarczającego rozpoznania niekonwencjonalnych złóż węglowodorów, konieczne jest szukanie analogii do znanych złóż ze Stanów Zjednoczonych, reinterpretacja danych archiwalnych według współczesnych standardów oraz wykorzystanie nowoczesnych metod badawczych. W niniejszej pracy przedstawione zostały wyniki badań mineralogicznych wykonanych na podstawie rdzeni z otworów wiertniczych z lat 70. zlokalizowanych w basenie bałtyckim (północna część polskiego basenu dolnopaleozoicznego). Badaniom poddano skały drobnoziarniste wieku ordowickiego i sylurskiego. Na podstawie: dyfrakcji rentgenowskiej (XRD), mikroskopii skaningowej (SEM) połączonej z analizą spektrometryczną (EDS) oraz z wykorzystaniem analizy metodą Rietvelda określono jakościowo i ilościowo skład mineralny skał drobnoziarnistych. Otrzymane wyniki mają duże znaczenie przy szacowaniu efektywności procesu szczelinowania hydraulicznego, określeniu warunków sedymentacji, procesów diagenetycznych oraz stratygrafii sekwencji w profilu dolnego paleozoiku.
EN
The last years in Poland is a great interest in potential natural gas deposits in the Silurian and Ordovician finegrained sediments (shale gas). In Poland, due to lack of sufficient recognition of unconventional hydrocarbon resources, it is necessary to look for analogies to the known deposits in the United States, a reinterpretation of archival data by modern standards and the use advanced research methods. This paper presents the results of mineralogical studies carried out on cores from boreholes in the 70's, located in the Baltic Basin (northern part of the Polish Lower Paleozoic Basin). Silurian and Ordovician finegrained sediments were investigated. The final result is qualitatively and quantitatively determination of the mineral composition of finegrained sediments based on: X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with spectrometric analysis (EDS) and using Rietveld analysis. These results are important in estimating the effectiveness of hydraulic fracturing process, defining the conditions of sedimentation, diagenetic processes and sequence stratigraphy of the Lower Paleozoic profile.
EN
The Western Outer Carpathians flysch of Poland comprises clasts of crystalline rocks representing source areas that supplied sedimentary basins with clastic material. Zircon from quartz syenite and granite cobbles representing the Silesian Ridge, the currently unexposed source area located at the southern margin of the Silesian Basin, yielded uniform U-Pb dates of 604š6 Ma and 599š6 Ma. These are interpreted as the age of igneous crystallization. Similarly, zircon from a gneiss cobble derived from the northern source terrain gave 610š6 Ma date, which is interpreted as the age of crystallization of the granitic protolith to the gneiss. The Neoproterozoic magmatism is interpreted to have occurred at the Gondwana active margin.
EN
The last two decades witnessed a significant progress in understanding unconventional hydrocarbon systems, exploration and developments in technology, which led to substantial increase of tight gas and shale gas production. This progress occurred mainly in USA, where unconventional gas production currently stands for ~~50 % of annual domestic gas production, and it is forecast to increase to more than 60 % in 2016. Recoverable shale gas resources of USA and Canada are estimated at present for at least ~20 trillion m3 (~~750 Tcf). Shale gas is a unique hydrocarbon system in which the same rock formation is a source rock, reservoir rock and seal (Figs. 2, 3). Gas field often appears continuous at a regional scale and does not requires hydrocarbon trap (Fig. 3). For development of shale gas, a high TOC contents (>1-2 %) is required for relatively thick formation (>30-70 m). High thermal maturity is essential for gas generation (>1.1-1.3 % Ro), and relatively low depth of burial (3500-4500 m) is necessary for commercial gas production. Gas is accumulated in isolated pores or adsorbed by organic matter (Fig. 5). Gas exploitation requires dense grid of wells with horizontal intervals and multiple fracturing. Shale gas is currently produced in several basins in USA and Canada. American success in unconventional gas production led to intensive shale gas and tight gas exploration across the world, with Europe being one of the priorities (Fig. 7). At the current stage, a couple of European sedimentary basins were selected as the major shale gas exploration targets. This includes predominantly the Lower Jurassic shale in the Lower Saxony Basin in Germany, the Alum shale in Scania (Southern Sweden), and to a lesser degree, the South-Eastern Basin in France with its Lower Jurassic and Lower to Upper Cretaceous shales, the Paris Basin in France with the Lower Jurassic shale, the Upper Jurassic shale in the Vienna Basin, the Lower Cretaceous Wealden shale in England, the Bodensee Trough in SW Germany with the Permian-Carboniferous shale, and the cenozoic Mako Trough in Hungary. In Europe the most intense exploration for shale gas is currently being carried out in Poland. The major target in that exploration is the Lower Palaeozoic shale at the East European Craton (Baltic and Lublin-Podlasie Basin), mainly the Upper Ordovician and/or Lower Silurian graptolitic shale (Fig. 8) (Poprawa & Kiersnowski, 2008; Poprawa, 2010). For that formation, Wood Mackenzie and Advanced Resources International estimated recoverable gas resources as equal to 1,400 mld m exp.3 and to 3,000 mld m exp.3, respectively. Also the Lower Carboniferous shale of the south-western Poland (area of Fore-Sudetic Homocline; Fig. 8) could potentially accumulate gas, however in this case a limitation to potential for shale gas is a complex tectonic setting. Other black shale formations in Poland appear to have lower potential for shale gas exploration due to insufficient thermal maturity, low TOC, or low thickness.
EN
The Lower Palaeozoic basin at the western slope of the East European Craton (EEC) (Fig. 1) is currently recognized as one of the most interesting areas for shale gas exploration in Europe. The Upper Ordovician and/or Lower Silurian graptolitic shale is here the major potential reservoir formation (Figs. 2, 3) (Poprawa & Kiersnowski, 2008; Poprawa, 2009). Moreover, the Upper Cambrian to Tremadocian Alum shale is an additional target locally in the northern part of the Baltic Basin. These sediments are often rich in organic matter (Klimuszko, 2002; Poprawa & Kiersnowski, 2008; Więcław et al., 2010; Skręt & Fabiańska, 2009), as well as silica. Limited data from two wells in the western part of the Baltic Basin show silica contents up to 60-70% (Fig. 4) (Krzemiński & Poprawa, 2006). The advantage of the Lower Palaeozoic shale from the western slope of EEC is its broad lateral extend (Fig. 1) and relatively quiet tectonic setting. The later is particularly true in the case of the Baltic Basin and Podlasie Depression. Structural development becomes to some extent more complex in the case of the Lublin region, where the Lower Palaeozoic shale appears affected by late Famennian to early Visean block tectonics. Development of the organic rich Lower Palaeozoic shale at the western slope of EEC was controlled by several factors. Very important was here the rate of non-organic detritus deposition (Fig. 5). The other factors included organic productivity of the basin, its subsidence, relative sea level changes, basin bathymetry, geochemical conditions at the sea bottom (especially oxygenation), degree of bioturbation, presence of topographic barriers at the sea bottom, leading to development of isolated anoxic zones, sea currents configuration, and climate changes. Organic matter of the Lower Palaeozoic is characterized by presence of II type of kerogen. Appearance of the organic-rich shale within the Lower Palaeozoic section at the western slope of the EEC is diachronic (Fig. 6). From NW towards east and SE, the intervals richest in organic appear related to systematically younger strata, starting from the Upper Cambrian to Tremadocian, as well as the Upper Llanvirn and Caradoc in the Łeba Elevation (northern onshore Baltic Basin; Fig. 7). In central parts of the Baltic Basin and Podlasie Depression as well as NW part of the Lublin region, the intervals richest in organic matter are found in the Llandovery section, while in the eastern part of the Baltic Basin and SE part of the Lublin region the highest TOC contents are found in the Wenlock. Therefore, depending on location at the western slope of EEC, different formations are recognized as the targets for shale gas exploration. The Upper Cambrian to Tremadocian shale, present only in the northern part of the Baltic Basin, is characterized by very high contents of organic matter, with average value for individual sections usually ranging from 3 to 12% TOC. This shale formation is, however, of very limited thickness, not higher than several meters in the onshore part of the basin (Szymański, 2008; Więcław et al., 2010). In onshore part of the studied area, thickness of the Caradoc shale changes from a few meters up to more than 50 m (Modliński & Szymański, 1997, 2008). Contents of organic matter in these sediments are the highest in the Łeba Elevation zone and the basement of the Płock-Warszawa trough, where average TOC contents in individual well sections range from 1% to nearly 4%. Ashgill rocks are characterized by high TOC contents only in the Łeba Elevation zone, where average TOC values for individual well sections rise up to 4,5% at the most. Llandovery shale has high TOC contents, particularly in its lower part, throughout vast parts of the western slope of EEC. The maximum measured TOC contents in those rocks in Podlasie Depression are nearly 20%. Average TOC values for individual sections of the Llandovery are usually equal 1% do 2,5%, except for the Podlasie Depression, where they may reach as much as 6%. Thickness of the Llandovery shale generally increases from east to west to approximately 70 m at the most. However, in the major part of that area it ranges from 20 to 40 m (Modliński et al., 2006). Thickness of theWenlock sediments is also highly variable laterally, from less than 100 m in SE part of the Lublin region to over 1000 m in western part of the Baltic Basin. Average content of organic matter in individualWenlock sections in central and western parts of the Baltic Basin and the Podlasie Depression usually ranges from 0,5% to 1,3% TOC. In the eastern part of the Baltic Basin and in the Lublin region it is higher, rising to about 1-1,7% TOC. The above mentioned TOC values show the present day content of organic matter, which is lower than the primary one. The difference between the present and primary TOC contents increases along with increasing thermal maturity. It is also highly dependant on genetic type of kerogen. Taking into account the II type of kerogen from the analyzed sediments, it may be stated that in the zones located in the gas window the primary TOC was at least one-half greater than indicated by laboratory measurements. From the shale gas point of view, the basins at the western slope of EEC are characterized by a negative relation between depth at present day burial and thermal maturity (Poprawa & Kiersnowski, 2008). In the zones with burial depth small enough to keep exploration costs at very low level (Fig. 8), thermal maturity of shales is too low for gas generation (Figs. 9, 12a). Maturity increases westwards (Fig. 8) along with depth of burial (Fig. 9). Thus, the potential shale gas accumulations in the western part of the studied area occur at depths too high for commercial gas exploration and exploitation (Fig. 12b). Between of the zone of maturity too low for shale gas development and that where depth of burial is too large for its exploration, there occurs a broad zone of the Lower Palaeozoic shale with increased shale gas exploration potential (Fig. 13) (Poprawa & Kiersnowski, 2008; Poprawa, 2009). In that area, there are shale intervals of relatively high thickness and average TOC exceeding 1-2% TOC (Fig. 7, 10, 12c). Thermal maturity of these rocks appears sufficient for generation of gas (Fig. 9, 10), and results of well tests for deeper-seated conventional reservoirs suggest good quality of dry gas with no nitrogen (Fig. 12c). It should be noted that some gas shows have been recorded in the Lower Palaeozoic shale. Moreover, depth of burial is not too large for commercial shale gas exploration (Fig. 8, 10). Hydrocarbon shows and their composition in the Lower Palaeozoic are strictly related to thermal maturity of the source rock. In the zones of low maturity, these are almost exclusively oil shows documented. Further westwards, in the zone transitional to the gas window area, gas is wet and contains significant contribution of hydrocarbon gases higher than methane.Within the gas window zone, the records are almost exclusively limited to methane shows. Moreover, within the zones of low maturity high nitrogen contents were recorded (Poprawa, 2009). In the zones characterized by thermal maturity in the range from 0,8 to 1,1% Ro and very high TOC contents (over 15% at the most), there is a potential for oil shale exploration. The zones with the highest oil shale potential include eastern Baltic Basin in SW Lithuania and NE part of the Podlasie Depression. Some data necessary for entirely firm estimations of potential shale gas resources of the Lower Palaeozoic complex in Poland are still missing. However, preliminary estimates indicate that these shale gas resources may possibly be classified as gigantic (1,400-3,000 bln m3 of recoverable gas; Fig. 15). For comparison, resources of conventional gas in Poland are equal to 140,5 bln m exp.3, and annual domestic gas consumption is at the level of 14 bln m exp. 3. However, it should be noted that some characteristics of the Lower Palaeozoic complexes indicate increased exploration risk. The average TOC contents are here lower than in classic examples of gas shales, like e.g. Barnett shale. Moreover, in the zone of optimal burial depth (less than 3000–3500 m) thermal maturity is lower than in the case of the Barnett shale core area. An important risk factor is also both a limited amount and limited resources of conventional gas fields in the Lower Palaeozoic complex (Fig. 13). Amount and intensity of gas shows in the Lower Palaeozoic shale are also relatively low, and there is no evidences for presence of overpressure in this complex. In the eastern part of western slope of the EEC, there appears an additional risk factor-arelatively high content of nitrogen in gas.
EN
The lower Paleozoic source rocks in the offshore part of the Gryfice and Kolobrzeg blocks (NW Poland) were studied through geochemical data and numerical modelling. The geochemical study revealed a presence of effective source rocks in Caradocian strata, but with low hydrocarbon potential. The remaining lower Paleozoic source rock horizons were not documented by core samples. The timing of hydrocarbon generation and expulsion was modelled for the K1-1/86 and L2-1/87 boreholes located in the Gryfice and Kolobrzeg blocks, respectively. 1-D and 2-D modelling indicated that in the Kolobrzeg Block the onset of petroleum generation occurred at the end of the Silurian and the beginning of the Devonian. Source rocks in the Gryfice Block reached the early stage of oil generation at the beginning of the Permian and generation processes were completed by the end of the Triassic. Migration of hydrocarbons from source rocks began in the Carboniferous in both the Gryfice and Kolobrzeg blocks and lasted to the end of the Mesozoic. During hydrocarbon migration, an intensive dispersion process was observed, caused by leaking along the fault planes. The modelling revealed that hydrocarbons may have accumulated in Devonian reservoirs. The lack of any discovered accumulations could be the result of hydrocarbon dispersion caused by tectonic deformation and intense vertical fault block movements.
EN
The burial history, thermal maturity, and timing of hydrocarbon generation of four source rock successions were modelled: the Middle Cambrian, the Upper Cambrian-Tremadocian, the Upper Ordovician (Caradocian) and the lower Silurian (Llandovery and Wenlock). The 1-D modelling was carried out in profiles of eight boreholes throughout the western Baltic region. Four selected boreholes are located offshore: A8-1/83, A23-1/88, B6-1/82 and B4-2A/02, and four onshore: Bialogóra 3, Dbki 3, Leba 8 and arnowiec IG 1. The thermal maturity of source rocks is the highest in the deeper buried western part of the basin and decreases from the west to the east and north-east towards the basin margins. The lower Paleozoic source rocks contain oil-prone Type-II kerogen. The modelling indicated that the onset of petroleum generation from the lower Paleozoic source rocks occurred from the Early Devonian through the early Carboniferous period. The peak of hydrocarbon generation took place from the Late Devonian to the Tournaisian. The majority of hydrocarbons generated were expelled during the latest Early Devonian and Carboniferous, and oil has not been expelled from source rock only in the eastern offshore part of the basin.
EN
The burial history and thermal evolution of the western part of the Baltic region was reconstructed by means of 1-D modelling for eight boreholes penetrating the lower Paleozoic succession. The Neoproterozoic rifting presumably caused elevation of heat flow, while Cambrian to Mid Ordovician post-rift thermal sag of the Baltica passive margin led to systematic decrease of heat flow with time. Development of the Late Ordovician to Silurian flexural foredeep of the Caledonide collision zone was associated with intensive subsidence, a high rate of sediment deposition and rapid burial of the Upper Cambrian and/or Tremadocian, Upper Ordovician and lower Silurian source rocks, presumably sufficient for the early stage of oil generation. After post-Caledonian Early Devonian uplift, the western Baltic region was subject to Early Devonian to early Carboniferous subsidence and deposition, leading to further burial of the source rocks. Together with elevated heat flow, characteristic of the Variscan broad foreland, this caused further source rocks maturation and hydrocarbon generation. Late- to post-Variscan uplift and erosion (late Carboniferous to late Permian) resulted in complete removal of the Middle Devonian to lower Carboniferous strata and development of the major regional unconformity. During late Permian to Cretaceous time the western part of the Baltic region constituted an eastern flank of the Polish Trough, with the main phases of subsidence and burial during late Permian-Early Triassic time, related to rifting in the Polish Trough, and during Late Cretaceous time, related to the compressional regime. Maturity profiles in boreholes from the vicinity of the studied boreholes indicate the presence of a late Mesozoic (Late Cretaceous?) positive thermal event, causing further maturation of the source rock.
PL
Najważniejszą formacją zbiornikową w Polsce, mającą potencjał do występowania złóż gaz ziemnego zamkniętego, są eoliczne piaskowce czerwonego spągowca w północnej części monokliny przedsudeckiej oraz na obszarach przylegających do niej od północy i wschodu. Piaskowce karbonu dolnego również mogą zawierać nagromadzenia gazu ziemnego zamkniętego, głównie w południowej i południowo-zachodniej części strefy wielkopolsko-dolnośląskiej. Pośrednie przesłanki pozwalają stwierdzić, że w obrębie utworów karbonu górnego w centralnej, zachodniej i południowo-zachodniej części basenu górnośląskiego mógł się wykształcić system węglowodorowy z gazem ziemnym centralnych stref basenu. Potencjał występowania złóż gazu ziemnego zamkniętego w pozostałych analizowanych formacjach określono jako niski.
EN
The main tight gas reservoir formation in Poland is the Rotliegend eolian sandstone in the northern part of the Fore-Sudetic Homocline and adjacent areas located further north and east. The Lower Carboniferous sandstone might also contain tight gas accumulation, mainly in the southern and south-western part of the Wielkopolska—Lower Silesian zone. Indirect constrains allows to suggest that Basin Centered Gas System might have developed in the Upper Carboniferous complex of the central, western and south-western part of the Upper Silesian Basin. The other analyzed formations have low potential for development of tight gas accumulations.
PL
Badania inkluzji fluidalnych są bardzo pomocne w zrozumieniu procesów cementacji w skałach zbiornikowych oraz określenia relacji między nimi a migracją węglowodorów. W połączeniu z modelowaniem basenów badania te pozwalają uszczegółowić historię pogrążania, temperatury i ciśnienia danego basenu sedymentacyjnego. Przykład integracji tych metod badawczych stanowią prezentowane w artykule wyniki badań przeprowadzonych na próbkach z otworu wiertniczego Benice-3. Próbki pobrano z utworów węglanowych dolomitu głównego (Ca2), występujących w obrębie platformy węglanowej Kamienia Pomorskiego (PWKP, Pomorze Zachodnie). Obszar ten stanowi północno-zachodnią część polskiego basenu cechsztyńskiego. Na obszarze PWKP znajduje się jedno z największych polskich złóż ropy naftowej Kamień Pomorski, występujące w węglanowych facjach platformowych Ca2. Skały zbiornikowe reprezentują facje doloziarnitów zdeponowanych w strefie płycizn oolitowych. Inkluzje fluidalne znaleziono we wczesnodiagenetycznych cementach anhydrytowych. Po uzyskaniu danych mikrotermometrycznych obliczono rzeczywiste wartości temperatury i ciśnienia precypitacji cementów anhydrytowych, które wynoszą: 94–110°C oraz 270–330 bary. Stężenie solanki wynosi od 1,6 do 5,2% wag. równoważnika NaCl z małą ilością CO2 oraz CaCl2. Skład jest typowy dla roztworów formacyjnych związanych z procesami anhydrytyzacji skał dolomitu głównego w warunkach płytkiego do średniego pogrzebania. Porównując wyniki otrzymane z pomiarów inkluzji fluidalnych z modelowniami historii pogrzebania basenu sedymentacyjnego stwierdzono, że temperatury 94–110°C zostały osiągnięte przez cementy anhydrytowe w okresie wczesnej–późnej jury, tj. ok. 153–181 mln lat temu. Migracja roztworów niosących węglowodory miała miejsce przed migracją fluidów, które doprowadziły do anhydrytyzacji, ale po procesach dolomityzacji.
EN
Fluid inclusion studies can be very helpful in understanding petroleum genesis and hence aid hydrocarbon exploration. When combined with basin modeling, such studies may allow detailed refinements to the general burial–temperature–pressure history of a sedimentary basin. As a case study, borehole data derived from the Main Dolomite (Ca2) carbonates of the Benice-3 well located within the Kamień Pomorski carbonate platform (KPCP, West Pomerania) of the northwestern part of the Polish Zechstein Basin were considered. The KPCP area contains one of the largest Polish oilfields, Kamień Pomorski, localized within the Ca2 platform facies and contains geological reserves of 317974 BBL of oil. The reservoir rocks of the Ca2 are characterized primarily by oolitic dolograinstone facies deposited within the oolite shoal zone. In this study, fluid inclusion data were obtained from early diagenetic anhydrite cements. After pressure correction, these data revealed temperatures within the range 94–110°C with pressures of 270–330 bars. The composition of the brine was found to be from 1.6 to 5.2 wt. % NaCl with small amounts of CO2 and CaCl2. This represents formation brines associated with an anhydritization process of the Main Dolomite rocks during shallow-to-intermediate burial conditionss. By integration of the results of fluid inclusion microthermometry with a basin modeling approach claimed that temperatures of 94–110°C were obtained by anhydrite cements during Early–Late Jurassic time. Migration of hydrocarbon-bearing solutions was before migration of fluids which led to anhydritization but after dolomitization.
PL
Analizowano formacje ilasto-mułowcowe o podwyższonej zawartości węgla organicznego w basenach sedymentacyjnych w Polsce pod kątem możliwości występowania w nich gazu ziemnego. Wysoki stopień deformacji tektonicznych łupków menilitowych w Karpatach zewnętrznych, a w mniejszym stopniu również łupków karbonu dolnego w strefie monokliny przedsudeckiej, ogranicza możliwość eksploatacji z nich gazu ziemnego. Osady ilasto-mułowcowe mioceńskiego zapadliska przedkarpackiego są nieperspektywiczne dla występowania gazu ziemnego w łupkach z uwagi na niską zawartość TOC oraz niski stopień konsolidacji. Osady ilasto-mułowcowe od najwyższej jury do najniższej kredy, jury dolnej i środkowej oraz retyku w basenie polskim, a także dolnopermskie łupki antrakozjowe i walchiowe w niecce śródsudeckiej charakteryzują się ogólnie zbyt niską dojrzałością termiczną do powstania złóż gazu. Górnopermskie łupki miedzionośne oraz ilasto-margliste odmiany facjalne dolomitu głównego w basenie polskim mają zbyt małą miąższość. Niska dojrzałość termiczna cechuje także łupki występujące w obrębie górnokarbońskich basenów węglowych, tj. w basenie lubelskim oraz we wschodniej części basenu górnośląskiego. W obu basenach brak jest ponadto homogenicznych kompleksów iłowcowych o dużej miąższości. Łupki w obrębie utworów najwyższego dewonu i najniższego karbonu na Pomorzu Zachodnim charakteryzują się stosunkowo niską zawartością węgla organicznego. Największe prawdopodobieństwo występowania gazu ziemnego stwierdzono dla łupków syluru dolnego i ordowiku górnego na kratonie wschodnioeuropejskim. Dolnokarbońskie łupki w obrębie utworów kulmowych strefy wielkopolskiej w rejonie monokliny przedsudeckiej stanowią drugorzędny cel prac poszukiwawczych.
EN
Shale gas potential of organic rich claystone and mudstone formation from the sedimentary basins in Poland was analyzed. Intensive tectonic deformation of the Outer Carpathian Menilite shale, as well as their often low thermal maturity, are limits for shale gas exploration. To a lesser degree this is truth also for the Lower Carboniferous shale in the Wielkopolska zone (SW Poland). Claystone and mudstone in the Miocene foredeep basin of Carpathians are not consolidated and have too low TOC. The uppermost Jurassic to lowermost Cretaceous shale and the Lower and Middle Jurassic shale in the Polish Basin, as well as the Lower Permian Antracosia and Walchia shale in the Intra-Sudetic basin, are generally characterized by too low thermal maturity for gas generation. Thickness of the Upper Permian Copper shale as well as the Upper Permian Main Dolomite in shaly and marly development is too low to be considered as shale gas targets. Low thermal maturity is characteristic also for the Upper Carboniferous shale in the Lublin basins, and in the eastern part of the Upper Silesian Basin. Both the basins lack thick homogenous shale formation. The uppermost Devonian to lowermost Carboniferous shale in the Western Pomerania is characterized by too low TOC contents. The highest potential of shale gas exploration is related to the Upper Ordovician and/or Lower Silurian graptolitic shale at the East European Craton. The Lower Carboniferous shale in the Fore-Sudetic Monocline area is regarded as a secondary target.
17
PL
Przedstawiono główne etapy wczesnopaleozoicznej ewolucji perygondwańskich płyt litosferycznych w nawiązaniu do historii superkontynentu Rodinia, a zwłaszcza efektu neoproterozoicznego ryftowania, które doprowadziło do izolacji Gondwany, Laurencji, Syberii i Bałtyki. Wskazano z kolei na wczesnopaleozoiczne (późny kambr-wczesny ordowik) ryftowanie terranów awalońskich, które objęło m.in. północno-zachodnią i południową Polskę. Na tym tle zobrazowano również wczesnopaleozoiczne wydarzenia geotektoniczne w dalekowschodniej Azji.
PL
Głównym obiektem, spełniającym kryteria decydujące o możliwości występowania gazu ziemnego w skałach ilastych, są utwory górnego ordowiku i syluru w basenie bałtyckim i basenie lubelsko-podlaskim. Kryteria takie częściowo spełniają również ilaste kompleksy w obrębie utworów dolnego karbonu w strefie wielkopolskiej (rejon monokliny przedsudeckiej). Niekonwencjonalne akumulacje gazu ziemnego w skałach ilasto-mułowcowych, aczkolwiek o bakteryjnej genezie, mogą występować również w mioceńskim zapadlisku przedkarpackim. Największe perspektywy dla poszukiwania złóż gazu ziemnego zamkniętego związane są z eolicznymi i fluwialnymi piaskowcami czerwonego spągowca, głównie w strefie NE monokliny przedsudeckiej. Akumulacje gazu ziemnego zamkniętego mogą występować również w piaskowcach kambryjskich na obszarze kratonu wschodnioeuropejskiego, środkowo- i górnodewońskich utworach węglanowych w basenie lubelskim, jak również w piaskowcach kredowych i paleogeńskich w głębiej pogrążonych partiach orogenu Karpat zewnętrznych. Utwory dolnego karbonu w strefie wielkopolskiej lokalnie spełniają warunki dla współwystępowania w profilu kompleksów drobnoklastycznych zawierających gaz w łupkach oraz kompleksów piaskowcowych zawierających gaz zamknięty.
EN
The main target for shale gas exploration in Poland is the Upper Ordovician to Silurian black graptolitic shale at the East European Craton (Baltic Basin, Lublin-Podlasie Basin; Eastern and Northern Poland). Existence of such petroleum system is in this case confirmed by presence of gas shows. Locally criteria for shale gas exploration are meet by shales within the Lower Carboniferous section in Wielkopolska zone (region of Fore-Sudetic Monocline; Western and SW Poland). Unconventional accumulation of biogenic gas might exist within shales and mudstones of the Outer Carpathian Miocene Foredeep (SE Poland). The high potential for tight gas exploration is suggested for the Rotliegend eolian and fluvial sandstones, mainly in the region of NE Fore-Sudetic Monocline. Accumulations of tight gas might exist also in the Cambrian sandstones of the East European Craton, the Middle to Upper Devonian carbonates of the Lublin Basin, and also in the Cretaceous to Paleogene sandstones in the deep parts of the Outer Carpathian thrust belt (SE Poland). The Lower Carboniferous in Wielkopolska zone, composed of deep marine shales, mudstone and sandstone, might contain both shale and tight gas.
EN
At the end of the Jurassic and beginning of the Cretaceous in the Western Outer Carpathians (WOC) rift-related extension led to development of: the deep marine grabens with flysch and pelagic sedimentation, the zones of shallow marine carbonate sedimentation, and the elevated horsts, supplying the basins with sediments. Transition to the Early Cretaceous and Cenomanian post-rift thermal sag stage was responsible for a general ceasing of tectonic activity in the source areas and unification of the previous sub-basins. In Barremian–Albian time, the northern, external sources for sediments were uplifted due to compression, presumably caused by the orogenic collision in the Middle and Outer Dacides and/or collision related to subduction of the Penninic Ocean. The Silesian Ridge, rapidly elevated and eroded during Late Cretaceous and Paleocene, is interpreted here as an active thick-skinned thrust belt. Nappe stacking in that area and stress transmission towards foreland caused flexural subsidence of the proximal zone (the inner Silesian Basin) and uplift in the distal zone (including: the outer Silesian Basin, the Subsilesian facies zone, the Skole Basin and the northern sediment source areas). The Eocene alternating shallow marine deposition in the Silesian Ridge and its exposition for erosion is interpreted as controlled by both eustatic sea level changes and episodic tectonic activity. At this time new thick-skinned thrust belt developed south of the Magura Basin, which supplied vast amount of detritus for the Magura Beds. The Eocene tectonic shortening and deformations in the Southern Magura Ridge and development of the accretionary prism caused flexural bending of its broad foreland, subsidence and relative facies unification of the basins and decrease of activity of the source areas located north of the Magura Basin. The Oligocene progress of plates/microplates convergence and relocation of the zone of tectonic shortening towards the north led to compressional uplift of the source areas located both to the north of the WOC basins and to the south of the Silesian facies zone, the later composed of crystalline basement, as well as sediments of the Magura Unit. That sources supplied with detritus the Upper Oligocene–Llower Miocene Krosno Beds, being a diachronic continuation of synorogenic deposition of the Magura Beds. During the Late Cretaceous–Paleogene–Early Miocene, an important tectonic shortening across the WOC took place, accommodated mainly in the source areas. This indicates that the palaeogeographic relationships between the Silesian Basin, the Magura Basin and the Central Carpathian Paleogene Basin were changing during the Cretaceous and Cainozoic. In the time span of Albian to Oligocene in the zone palaeogeographically located between the Magura Basin and the Central Carpathians three separate source areas were active, each characterized by a different geological setting. These sources were replacing each other in time, suggesting significant collisional and/or strike slip reorganisation of the zone during that period. The collision of the WOC evolved in time from thick-skinned mode during the Late Cretaceous–Paleogene to thin-skinned one during the Middle Miocene.
EN
Analysis of deposition rate were performed for synthetic sections, representing the upper Jurassic to lower Miocene sedimentary fill of the Western Outer Carpathian (WOC) basins. Calculated deposition rates differs in a range of a few orders of magnitude. During Tithonian to Berriasian-early Valanginian tectonic activity of the source areas supplying the Silesian Basin was related to the mechanism of syn-rift extensional elevation and erosion of horsts. General decay of source area activity in Valanginian to Cenomanian time was caused by regional post-rift thermal sag of the WOC. The Barremian to Albian phase of compressional uplift of the source area located north of the WOC lead to increase of deposition rate in some zones of the WOC basin. In Turonian to Paleocene time thick-skinned collision and thrusting took place south and south-west (in the recent coordinates) of the Silesian Basin causing very rapid, diachronous uplift of this zone, referred to as Silesian Ridge, resulting with high deposition rate in the Silesian Basin. At that time supply of sediments to the Magura Basin from south was relatively low, and the Pieniny Klipen Belt was presumably zone of transfer of these sediments. In Eocene the zone of collisional shortening in the WOC system was relocated to the south, causing rapid uplift of the Southern Magura Ridge and intense supply of detritus to the Magura Basin. Thrusting in the Southern Magura Ridge and collisional compression resulted with flexural bending of its broad foreland, being the reason for decrease of activity of both the Silesian Ridge and the source area at the northern rim of the WOC. The Eocene evolution of the Silesian Ridge is interpreted as controlled by both episodic tectonic activity and eustatic sea level changes. Contrasting development of the Southern Magura Ridge and the northern rim of Central Carpathians during Eocene stands for a palaeographic distance between the two domains at that time. During Oligocene and early Miocene a significant increase of deposition rates is observed for the basin in which sediments of the Krosno beds were deposited. This was caused by tectonic uplift of the source at the northern rim of the WOC, as well as the Silesian Ridge and the partly formed Magura nappe. The Miocene molasse of the WOC foredeep basin is characterised by notably higher maximum deposition rates than ones calculated for the flysch deposits of the WOC.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.