Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On the applicability of post-IR IRSL dating to Japanese loess
EN
Recent work on infrared stimulated luminescence (IRSL) dating has focussed on finding and testing signals which show less or negligible fading. IRSL signals measured at elevated temperature following IR stimulation at 50°C (post-IR IRSL) have been shown to be much more stable than the low temperature IRSL signal and seem to have considerable potential for dating. For Early Pleistocene samples of both European and Chinese loess natural post-IR IRSL signals lying in the saturation region of the laboratory dose response curve have been observed; this suggests that there is no significant fading in nature. As a contribution to the further testing of post-IR IRSL dating, we have used 18 samples from two Japanese loess profiles for which quartz OSL and tephra ages up to 600 ka provide age control. After a preheat of 320°C (60 s), the polymineral fine grains (4-11 μm) were bleached with IR at 50°C (200 s) and the IRSL was subsequently measured at 290°C for 200 s. In general, the fading uncorrected post-IR IRSL ages agree with both the quartz OSL and the tephra ages. We conclude that the post-IR IRSL signal from these samples does not fade significantly and allows precise and accurate age determinations on these sediments.
2
Content available remote Luminescence dating of young coastal deposits from New Zealand using feldspar
EN
A new measurement protocol has been tested on K-feldspars from Whanganui Inlet and Parengarenga Harbour, New Zealand. A Single Aliquot Regenerative (SAR) dose protocol, using two successive infrared (IR) stimulations (post-IR IR SAR protocol) is setup for these young (<1000 years) coastal sediments. Significant anomalous fading (g2days=7 %/decade) is observed using the conventional IR signal measured at 50°C. In contrast, the fading rate of the IR signal measured at elevated temperature (150°C) after the IR stimulation at 50°C (a post-IR IR signal) is not significant (g2days=7% /decade). Surprisingly low residual infrared stimulated luminescence (IRSL) signals were observed for a surface sample, suggesting that accurate ages as young as ~50 years can be obtained for these recent deposits. IRSL ages ranging between 48š6 years and 1050š50 years are obtained from six samples, indicating that sediment accumulation has occurred at the two sites during the last millennia, despite a falling trend in relative sea-level in Whanganui Inlet and a stable relative sea-level at Parengarenga Harbour.
EN
Using a set of modern/young (0 to about 200 years old) dust samples collected from the Chinese Loess Plateau the bleachability of IRSL measured at 50°C (IR50) and post-IR50 elevated temperature IRSL (measured at 225°C and at 290°C) is investigated by measuring the apparent (residual) doses recorded by these signals. Doses recorded by quartz OSL are used as a reference. Allowing for differences in dose rates it seems that both IRSL and post-IR IRSL signals yield residual doses that are significantly larger than the doses measured in quartz. These residual doses can be largely explained by thermal transfer caused by preheating. Nevertheless, we advise against the use of a low temperature preheat (<200°C) with IR50 to date loess samples because, as has been reported before, the signal appears to be thermally unstable. In general, we conclude that it may not be advisable to apply post-IR IRSL dating to Chinese loess samples where residuals of up to ~20 Gy are a significant fraction of the total dose. However, these residuals quickly become unimportant when dating older samples, and this is the age range in which post-IR IRSL dating is likely to be most useful.
4
Content available remote Investigating the resetting of OSL signals in rock surfaces
EN
There are many examples of buried rock surfaces whose age is of interest to geologists and archaeologists. Luminescence dating is a potential method which can be applied to dating such surfaces; as part of a research project which aims to develop such an approach, the degree of resetting of OSL signals in grains and slices from five different cobbles/boulders collected from a modern beach is investigated. All the rock surfaces are presumed to have been exposed to daylight for a prolonged period of time (weeks to years). Feldspar was identified as the preferred dosimeter because quartz extracts were insensitive. Dose recovery tests using solar simulator and IR diodes on both K-feldspar grains and solid slices taken from the inner parts of the rocks are discussed. Preheat plateau results using surface grains and slices show that significant thermal transfer in naturally bleached samples can be avoided by keeping preheat temperatures low. Equivalent doses from surface K-feldspar grains were highly scattered and much larger than expected (0.02 Gy to >100 Gy), while solid surface slices gave more reproducible small doses (mean = 0.17š0.02 Gy, n = 32). Neither crushing nor partial bleaching were found to be responsible for the large scattered doses from grains, nor did the inevitable contribution from Na-feldspar to the signal from solid slices explain the improved reproducibility in the slices. By modelling the increase of luminescence signal with distance into the rock surface, attenuation factors were derived for two samples. These indicate that, for instance, bleaching at a depth of 2 mm into these samples occurs at about ~28% of the rate at the surface. We conclude that it should be possible to derive meaningful burial doses of >1 Gy from such cobbles; younger samples would probably require a correction for incomplete bleaching.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.