Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available A perfect warning to avoid collisions at sea?
EN
Avoidance of collisions is one of the most important tasks for the officer of the watch on a ship’s bridge. Measures and actions required to avoid such accidents are described in the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) adopted by the International Maritime Organization (IMO) in 1972 and still valid, with several minor amendments, since then. On the basis of a proper look-out at all times, by sight and hearing, and the use of all available means, also including technical equipment installed on-board as well as information provided by a Vessel Traffic Service (VTS), the navigating officer collects traffic and environmental data and combines them with their own ship data to construct a mental traffic image for the assessment of risk of collision with other objects in the vicinity. In the case wherre there is an unacceptable risk she or he has to decide on taking action. In most of the cases decision making is appropriate to the prevailing circumstances and ships maneuver and pass at a safe distance. Only in very rare cases, due to whatever reasons, watch officers fail in taking appropriate actions in good time. It is assumed that, if effective alerting algorithms would be available, a substantial number of collisions at sea, and especially in coastal waters, can be avoided by making the watch officer aware that the ‘last line of defence’ for taking action is close to come. It is assumed that there is potential in applying the principle of the resolution advisory alert of an ACAS (Airborne Collision Avoidance System)/TCAS (Traffic Alert and Collision Avoidance System) in aviation and adapt it to the needs of maritime traffic. In this paper, the authors introduce a method for triggering collision warnings by focusing specifically on the critical last phase of an encounter and taking into account the maneuvering characteristics of the navigating ship. They comprehensively explore the application using scenario studies discussing the operational aspects of varying implementation states (one ship only, SOLAS ships only).
EN
Safety of navigation is especially challenging and critical when a ship approaches and manoeuvres in harbour areas. Improving the safety especially in the first and last phase of a voyage is crucial and requires measures addressing both the human and technical-technological elements including support systems that shall provide human operators with information relevant for decision making. The present situation is characterized by the introduction of numerous sophisticated technical and support systems often integrated with several components becoming increasingly complex. On the users end, changes are not that obvious and not that rapid as for technology. However, new approaches are under development or already in use. They are characterized by applying and adapting solutions from other transport modes. In this way, tasks and procedures on ships, that are highly safety-relevant and containing high portions of manoeuvring activities have been changed to high back-up procedures as in air planes. For port manoeuvres e.g. the system of pilot/co-pilot was introduced on ferries in a sense that one officer is operating and the other is monitoring and checking the safe performance. In cruise shipping, new structures replacing the traditional rank-based with a flexible system based on job functions. This system creates a kind of a safety net around the person conning the vessel. Each operation is cross checked before execution by one or two other persons. The first obvious consequence is higher costs due to doubling personnel. On the other hand there is also a need for a technology appropriately supporting the checking officer by enabling her or him to monitor what the conning officer is doing. “Fast-Time Manoeuvring Simulation Technology” (FTS) developed at the Institute for Innovative Ship Simulation and Maritime Systems (ISSIMS) has huge potential to fulfil this task. FTS calculates within one second of computing time up to 1000 seconds of real manoeuvring time by a very complex ship-dynamic simulation model for rudder, engine and thruster manoeuvres. It enables prompt prediction of all manoeuvres carried out by the conning officer for the observing officer, too. Predictions of path and motion status allow all officers to see whether the manoeuvring actions have at least the correct tendency or indicating the need for corrections. This new type of support is called Simulation-Augmented Manoeuvring Design and Monitoring (SAMMON) – it allows not only overlooking the next manoeuvring segment ahead but also for the following or even for series of manoeuvring segments. This technology has been used within two research projects: COSINUS (Co-operative Ship Operation in Integrated Maritime Traffic Systems) set out for implementing FTS into integrated ship bridges and to also communicate the manoeuvre plans and display it to VTS centres. Within the European project MUNIN (Maritime Unmanned Navigation through Intelligence in Networks) this technology has been used to investigate if it is possible to steer autonomous ships, in case it would be necessary.
3
EN
Rapidly increasing numbers of ships and ship sizes pose an ever-growing challenge to the maritime industry. Although statistics indicate improved levels of safety in the industry which carries 90% of the world’s trade, the risk of navigational accidents, among other issues, remains a prime concern and priority (EMSA, 2010; 2014). In order to address these concerns, the authors turned to another high-risk industry for inspiration. Specifically, they turned to the aviation industry, which has often been used as a source of comparisons and ideas by researchers in the maritime domain. Keeping up with the trend, the authors of this paper turn to a tried-and-tested system used widely in modern aviation: the Airborne Collision Avoidance System (ACAS). The prime idea behind ACAS is to construct two virtual 3D zones around an aircraft. These zones are dynamic, and depend on the manoeuvring characteristics of a given aircraft. If the system detects an “intruder” (another aircraft) in either of the two well-defined virtual zones, it provides warnings and/or instructions to pilots of both aircraft to take certain precautionary or emergency measures. In the current paper, the authors explore whether or not such a system is feasible for use in the maritime domain and, if so, how. The paper provides a detailed analysis of the potential benefits and drawbacks of using an ACAS-like system onboard vessels. It also discusses possible means of implementation and integration with current equipment, and explores how the introduction of e-navigation may impact the proposed solution.
EN
A fast time simulation tool box is under development to simulate the ships motion with complex dynamic models and to display the ships track immediately for the intended or actual rudder or engine manoeuvre. Based on this approach the innovative “Simulation Augmented Manoeuvring Design and Monitoring” - SAMMON tool box will allow for (a) a new type of design of a manoeuvring plan as enhancement exceeding the common pure way point planning (b) an unmatched monitoring of ship handling processes to follow the underlying manoeuvring plan. During the manoeuvring process the planned manoeuvres can be constantly displayed together with the actual ship motion and the predicted future track which is based on actual input data from the ship’s sensors and manoeuvring handle positions. This SAMMON tool box is intended be used on board of real ships but it is in parallel an effective tool for training in ship handling simulators: (a) in the briefing for preparing a manoeuvring plan for the whole exercise in some minutes, (b) during the exercise run to see the consequences of the use of manoeuvring equipment even before the ship has changed her motion and (c) in debriefing sessions to discuss potential alternatives of the students decisions by simulating fast variations of their choices during the exercises. Examples will be given for results from test trials on board and in the full mission ship handling simulator of the Maritime Simulation Centre Warnemuende.
EN
International sea transport has growing rapidly during the period of the last decade. Ships became larger and wider and its container capacity is still increasing to 12.000 TEU and even more. To navigate such vessels safely from port to port and specifically within the ports more and more enhanced computer-based systems are installed on the ships navigational bridges. Prediction tools are very helpful and already in use on ships for a long time. However, the simplification of existing predictions allows restricted use only and do not include the immediate response on changes of rudder and engine. Within this paper investigations into the feasibility and user acceptance of newly developed layout of navigation display will be introduced and selected results of simulation studies testing the influence on manoeuvre performance dependent on different kind of prediction functions will be discussed. Examples will be given for results from test trials in the full mission ship handling simulator of the Maritime Simulation Centre Warnemunde and a concept for the application of the developed .tools for purposes of collision avoidance is described.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.