Based on current developments related to the application of technology and the growth of load demand, power system structure (PSS) has grown into a large, intelligent network by integrating many new systems. At present, many classical systems are being modernized and developed towards smart systems to various technical performances while providing continuously energy from the generating sites to serve load centres as end energy users. On the other hand, protection and attention to the environment and renewable energy sources also affect the power system operation which is intended to reduce emissions and include green energy sources. Furthermore, these works explore an assessment of operations on local interconnection system topologies which are installed captive power plants. These studies are used to develop and evaluate the performance, where solar power plants are also installed as sources of energy suppliers. In this study, operating assessments are approached using a power flow study (PFS) to define structural performance expanded through several scenarios. In addition, the procedure for obtaining optimal conditions is also facilitated by using the Takagi Method (TM) and Thunderstorm Algorithm (TA) for PFS hybrid structures considered an integrated renewable energy source (IRES). Based on the technical scenario set, the results show that the applied scenarios have different performances. In addition, this study also provides various implications. IRES has affected system performance. PSS contributes to the part that is committed to covering the burden. TM and TA can be applied to the hybrid PFS structure.
PL
W artykule przedstawiono metodę PFS (power flow study) do optymalizacji struktury lokalnej sieci zasilającej z zainstalowanymi źródłami fotowoltaicznymi. Zastosowano też metodę Takagi i algorytm burzowy do optymalizacji sieci z różnymi scenariuszami.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.