Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A new and simple model for predicting soil erosion based on hole erosion tests
EN
Determination of erosion characteristics is of great significance to assess the erodibility of geomaterials that are subjected to seepage force. The erosion characteristics indicate soil particle removal in term of internal erosion that might occur in earthen structures. Hole erosion test (HET) is a simple and effective approach to determine erosion characteristics. It is noted that there are not many studies that focus on the development of a theoretical model describing the erosion characteristics and the associated process of soil particle detachment in HETs. The aim of this study is to propose a simple model based on Bernoulli’s principle to interpret erosion characteristics of geomaterials in HETs. An analytical equation was deduced from a physically based model incorporating Bernoulli’s principle and erosion constitutive law for internal erosion within a soil pipe driven by pressure gradient. The analytical equation could be applied to determine soil particle removal, radial erosion propagation, erosion coefficient, and critical shear stress. A series of HETs were performed under different flow rate to verify the proposed model. The obtained results demonstrated that the proposed model allowed for reasonably predicting the amount of soil particle removal and understanding erosion characteristics of soils through the HET.
EN
Rainfall-induced progressive soil erosion of compacted surface layer (SL) impedes the functioning of cover system (CS) of landfills with high expected design life (≈ 100 years). The existing soil erosion models are not tested extensively for compacted soil with cracks and vegetation. This study evaluated the efficacy of three popular soil erosion models for estimating the soil loss of compacted SL of CS, which is useful for annual maintenance. The interactive effect of rainfall, vegetation and desiccation cracks on erosion of compacted surface layer was investigated under the influence of both natural and simulated rainfall events for one year. Among all, the Morgan, Morgan and Finney (MMF) model was found to be effective in predicting soil erosion of compacted SL. However, the MMF model overestimated soil erosion when the vegetation cover exceeded 60%. The soil loss estimated from Revised Universal Soil Loss Equation (RUSLE) and Water Erosion Prediction Project (WEPP) models was poor for high rainfall intensity (100 mm/h). The RUSLE and WEPP model overestimated the soil erosion for low vegetation cover (≤3%) and underestimated for vegetation area>3%. The mechanism of root reinforcement, strength due to root water uptake-induced soil suction and its effect on soil loss mitigation could not be adequately captured by the existing models for compacted SL. Further studies are needed to improve the existing erosion models for incorporating the effects of desiccation and vegetation on soil loss from the compacted SL.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.