Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
On-chip optical-interconnect technology emerges as an attractive approach due to its ultra-large bandwidth and ultra-low power consumption. Silicon-on-insulator (SOI) wire waveguides, on the other hand, have been identified to potentially replace copper wires for intra-chip communication. To take advantage of the wide bandwidth of SOI waveguides, wavelengthdivision multiplexing (WDM) has been implemented. However, WDM have inherent drawbacks. Mode-division multiplexing (MDM) is a viable alternative to WDM in MIMO photonic circuits on SOI as it requires only one carrier wavelength to operate. In this vein, mode converters are key components in on-chip MDM systems. The goal of this paper is to introduce a transverse electric mode converter. The suggested device can convert fundamental transverse electric modes to first-order transverse electric ones and vice versa. It is based on small material perturbation which introduces gradual coupling between different modes. This device is very simple and highly compact; the size of which is 3 μm². Mathematical expressions for both the insertion loss and crosstalk are derived and optimized for best performance. In addition, three-dimensional finite-difference time-domain (3D-FDTD) simulations are performed in order to verify the mathematical model of the device. Our numerical results reveal that the proposed device has an insertion loss of 1.2 dB and a crosstalk of 10.1 dB. The device’s insertion loss can be decreased to 0.95 dB by adding tapers to its material perturbation.
EN
A new simple design methodology which makes LDR output nearly insensitive to jumps of the load current for long times is proposed. This methodology is tested for more than 10⁴ seconds. Our procedure leans on cross coupling of the time second derivative of the LDR power transistor gate and drain voltages along with their currents. This technique keeps low values of these currents in order of nano or hundreds of micro amperes for undershot or overshot cases, respectively. The introduced methodology has been applied to a standard CMOS of 0.18μm technology for NMOS transistors and validated using MATLAB R2014a.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.