The measurements of advancing contact angle of water, glycerol, formamide, ethylene glycol, diiodomethane, α-bromonaphthalene, 1,2,3-tribromopropane and aqueous solution of n-octyl-β-D-glucopyranoside (OGP) on unoxidized and oxidized synthetic chalcocite at the temperatures equal to 293, 303 and 313 K were made. Using the obtained contact angle values of the pure liquids the components and parameters of the unoxidized and oxidized synthetic chalcocite surface tension were calculated. For this calculation, different methods based on the Young equation were applied. It follows that the surface tension of both forms of chalcocite does not practically depend on the temperature in the range from 293 to 313 K. Taking into account the calculated values of components and parameters of unoxidized and oxidized chalcocite surface tension their wettability by the aqueous solution of n-octyl-β-D-glucopyranoside was considered. It appeared that wettability of the unoxidized chalcocite by aqueous solution of OGP can be predicted on the basis of the chalcocite surface tension components and parameters.
W artykule przedstawiono wstępne wyniki prac w zakresie nowej koncepcji wykorzystania oleju rzepakowego (OR) jako paliwa. Pokazano podstawowe różnice w zakresie własności fizykochemicznych dla oleju rzepakowego i napędowego. Omówiono teoretyczny wpływ własności fizykochemicznych paliwa na proces tworzenia mieszaniny palnej. Przeanalizowano możliwości modyfikacji własności fizykochemicznych oleju rzepakowego poprzez zastosowanie dodatków chemicznych w małych udziałach objętościowych w mieszaninie z OR.
EN
This paper presents preliminary results of work on the new concept of using rapeseed oil (OR) as fuel. Shows the basic differences in the physicochemical properties of rapeseed oil and diesel. Discusses the theoretical effect of physicochemical properties of fuel for the process of creating a combustible mixture. Analyzed the possibility of modifying the physicochemical properties of rapeseed oil by the use of chemical additives in small proportions by volume of OR.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper reviews the results of investigations of the surface free energy of surfactants and the correlation between hydrophobic group of surfactant-water and hydrophilic group of surfactant-water interfacial free energy and standard free energy of adsorption at water-air (oil) interface and standard free energy of micellization. The surface free energy of the hydrophobic and hydrophilic group of the surfactants is considered separately. The van Oss and co-workers' approach to the interfacial liquid-liquid and solid-liquid free energy used for the energy determination has been described. This approach treats the surface free energy of a solid and a liquid as the sum of the Lfshitz-van der Waals and Lewis acid-base components. The acid-base component of the surface free energy depends on the electron-acceptor and electron-donor parameters of this energy. Different determination ways of the surface free energy components and parameters of the hydrophobic and hydrophilic group of the surfactants are shown. The usefulness of the Young equation and adsorption data of n-alkanes on solid surface for determination of the Lifshitz-van der Waals component and electron-acceptor parameters of the acid-base component of the hydrophilic group of the surfactants is presented. On the basis of the surface free energy components and parameters of the hydrophobic and hydrophilic group of the surfactants and recently modified DLVO theory, the free energy of interaction between molecules or ions of the surfactants through the water phase and the free energy of removing surfactant molecules or ions from the water phase to air or oil phase can be predicted. The modified DLVO theory treats the interaction between molecules or particles through the liquid phase as the sum of Lifshitz-van der Waals, acid-base and electrostatic interaction components, which details are described for the systems including ionic or nonionic surfactants. The free energy of interaction can be used for prediction of the standard free energy of adsorption and micellization of the surfactants if the contactable area of the molecules or ions of the surfactants is known. Different ways of the contactable area between the hydrophobic and hydrophilic group of the surfactants and between groups and water molecules are presented. The calculated values of the free energy of interactions of the surfactants through water phase are compared to the standard free energy of micellization and the standard free energy of the adsorption of surfactants at water-air (oil) interface. For this purpose the determination of the standard free energy of adsorption from isotherms of adsorption of the surfactants and their standard free energy of micellization is also described.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.