Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, the thermal behavior and decomposition kinetics of trinitrohexahydrotriazine (RDX) and its polymer bonded explosive (PBX) containing a hydroxyl-terminated polybutadiene (HTPB) based polyurethane binder in the ratio 80% RDX/ 20% HTPB were investigated using various experimental techniques and analytical methods. The HTPB polyurethane matrix contains other additives and was cured using hexamethylene diisocyanate (HMDI). Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Vacuum Stability Test (VST) and Ignition Delay Techniques were applied both isothermally and non-isothermally. The kinetic parameters were determined using both the isoconversional (model free) and the model-fitting methods. For comparison, Advanced Kinetics and Technology Solution (AKTS) software was also used. It was found that the addition of an HTPB-based polyurethane matrix to pure RDX decreased its decomposition temperature. It was also found that RDX/HTPB has a lower activation energy than pure RDX. The polyurethane matrix had a significant effect on the decomposition mechanism of RDX resulting in different reaction models. It was concluded that the activation energies obtained using the Ozawa, Flynn, and Wall (OFW) and Kissinger-Akahira-Sunose (KAS) methods were very close to the results obtained via the AKTS software lying in the range 218.3-220.2 kJ•mol−1. The VST technique yielded kinetic parameters close to those obtained using TG/DTG. On the other hand, the Ignition Delay Technique yielded different and inconsistent kinetic parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.