Over the last few years, numerous researchers have contributed significantly to summability theory by connecting various notions of convergence concepts of sequences. In this paper, we introduce the concepts of J-statistical supremum and J-statistical infimum of a real-valued sequence and study some fundamental features of the newly introduced notions.We also introduce the concept of J-statistical monotonicity and establish the condition under which an J-statistical monotonic sequence is J-statistical convergent. We end up giving a necessary and a sufficient condition for the J-statistical convergence of a real-valued sequence.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.