Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Mathews stability graph method was presented for the first time in 1980. This method was developed to assess the stability of open stopes in different underground conditions, and it has an impact on evaluating the safety of underground excavations. With the development of technology and growing experience in applying computer sciences in various research disciplines, mining engineering could significantly benefit by using Machine Learning. Applying those ML algorithms to predict the stability of open stopes in underground excavations is a new approach that could replace the original graph method and should be investigated. In this research, a Potvin database that consisted of 176 historical case studies was passed to the two most popular Machine Learning algorithms: Logistic Regression and Random Forest, to compare their predicting capabilities. The results obtained showed that those algorithms can indicate the stability of underground openings, especially Random Forest, which, in examined data, performed slightly better than Logistic Regression.
EN
Many mines in Canada have adopted sublevel stoping method or one of its variations, such as blasthole stoping (BHS) and sublevel longhole retreat (SLR), for the extraction of steeply dipping orebodies. Stope, as the basic excavated element, plays a significant role in the whole process of mining activity. In the mining method of BHS, crossing cuts are excavated at tops and bottoms in each stope for drilling blast holes and transportation of mined out orebodies. Crossing cuts failure may result in prolonged production interruption, fatality, and equipment loss. After the completion of orebodies excavation from the sublevel open stope, the void stopes will be backfilled with cemented rockfill (CRF) for secondary stopes. The strength of the CRF affects the stability of the adjacent crossing cuts for the next excavation scheme. Rational location of the last mined stope can effectively eliminate the instability of crossing cuts. By using the Finite Element Method (FEM) such as Abaqus codes in this study, this paper presents the comparison of floor heaves, roof displacements, and sidewall swellings of the crossing cuts in each stopes of different location scenarios. The numerical simulation shows that the central stope location of the level is the optimum one for the last mined stope.
EN
Rockburst is a common engineering geological hazard. In order to evaluate rockburst liability in kimberlite at an underground diamond mine, a method combining generalized regression neural networks (GRNN) and fruit fly optimization algorithm (FOA) is employed. Based on two fundamental premises of rockburst occurrence, depth, σθ, σc, σt, B1, B2, SCF, Wet are determined as indicators of rockburst, which are also input vectors of GRNN model. 132 groups of data obtained from rockburst cases from all over the world are chosen as training samples to train the GRNN model; FOA is used to seek the optimal parameter σ that generates the most accurate GRNN model. The trained GRNN model is adopted to evaluate burst liability in kimberlite pipes. The same eight rockburst indicators are acquired from lab tests, mine site and FEM model as test sample features. Evaluation results made by GRNN can be confirmed by a rockburst case at this mine. GRNN do not require any prior knowledge about the nature of the relationship between the input and output variables and avoid analyzing the mechanism of rockburst, which has a bright prospect for engineering rockburst potential evaluation.
PL
Tąpnięcia skał są powszechnym i ogólnie znanym zagrożeniem dla środowiska geologicznego oraz dla budowli. Do oceny skłonności skał do tąpania w podziemnej kopalni diamentów w Kimberlite zastosowano metodę stanowiącą połączenie sieci neuronowych realizujących uogólnioną regresję i algorytm muszki owocowej. W oparciu o dwie podstawowe przesłanki wystąpienia tąpnięcia, głębokość oraz σθ, σc, σt, wielkości B1, B2, SCF, Wet określone zostały jako wskaźniki wystąpienia tąpnięcia i następnie wy-korzystane jako wektory wejściowe w modelu sieci neuronowych GRNN. Zestawiono 132 zbiory danych o przypadkach tapnięć z całego świata i wykorzystano je jako zbiory uczące dla modelu sieci neuronowej realizującej uogólnioną regresję. Algorytm muszki owocowej wykorzystano do znalezienia optymalnej wartości parametru σ który umożliwi wygenerowanie najbardziej dokładnego modelu sieci neuronowej GRNN. Po treningu, model sieci GRNN wykorzystany został do oceny możliwości wystąpienia tąpnięcia w Kimberlite. Te same osiem wskaźników oceny skłonności wyrzutowej skały otrzymano na podstawie badań laboratoryjnych, z analiz prowadzonych w kopalni oraz w oparciu o metodę elementów skończonych, wyniki te wykorzystano następnie jako próbki danych. Wyniki uzyskane przy zastosowaniu sieci neuronowych realizujących regresję uogólnioną potwierdzone zostały przez wyniki uzyskane w trakcie wyrzutu w kopalni. Metoda sieci neuronowych nie wymaga uprzedniej wiedzy o naturze zależności pomiędzy zmiennymi wejściowymi i wyjściowymi i pozwala uniknąć analiz mechanizmu wyrzutu i tąpnięcia, co jest cechą pożądaną z punktu widzenia inżynierów odpowiedzialnych za ocenę skłonności skał do wyrzutu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.