Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Pattern-based Rewriting through Abstraction
EN
Model-based development relies on models in different phases for different purposes, with modelling patterns being used to document and gather knowledge about good practices in specific domains, to analyse the quality of existing designs, and to guide the construction and refactoring of models. Providing a formal basis for the use of patterns would also support their integration with existing approaches to model transformation. To this end, we turn to the commonly used, in this context, machinery of graph transformations and provide an algebraic-categorical formalization of modelling patterns, which can express variability and required/forbidden application contexts. This allows the definition of transformation rules having patterns in left and right-hand sides, which can be used to express refactorings towards patterns, change the use of one pattern by a different one, or switch between pattern variants. A key element in our proposal is the use of operations to abstract models into patterns, so that they can be manipulated by pattern rules, thus leading to a rewriting mechanism for classes of graphs described by patterns and not just individual graphs. The proposal is illustrated with examples in object-oriented software design patterns and enterprise architecture patterns, but can be applied to any other domain where patterns are used for modelling.
2
Content available remote An Algebraic Semantics for QVT-Relations Check-only Transformations
EN
QVT is the standard for model transformation defined by the OMG in the context of the Model-Driven Architecture. It is made of several transformation languages. Among them, QVTRelations is the one with the highest level of abstraction, as it permits developing bidirectional transformations in a declarative, relational style. Unfortunately, the standard only provides a semiformal description of its semantics, which hinders analysis and has given rise to ambiguities in existing tool implementations. In order to improve this situation, we propose a formal, algebraic semantics for QVT-Relations check-only transformations, defining a notion of satisfaction of QVT-Relations specifications by models.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.