An attempt was made in the present work to study the compressive strength and microstructure of geopolymer containing high calcium fly ash (HCFA) and silica fume. Concentration of sodium hydroxide solution 8M, 10M, 12M & 14M, liquid to binder ratio 0.5 and sodium hydroxide to sodium silicate ratio 2.5 were selected for the mixes. Geopolymer mortar test results indicated that the mix with 40% silica fume by the weight of HCFA yielded higher compressive strength under ambient curing. The XRD pattern typically shows the major portion of amorphous phase of geopolymer. The existence of C-A-S-H gel, N-A-S-H gel and hydroxysodalite gel products were observed through SEM which developed dense microstructure and thus enhanced strength of HCFA and silica fume geopolymer.
The present study examines some durability aspects of ambient cured bottom ash geopolymer concrete (BA GPC) due to accelerated corrosion, sorptivity, and water absorption. The bottom ash geopolymer concrete was prepared with sodium based alkaline activators under ambient curing temperatures. The sodium hydroxide used concentration was 8M. The performance of BA GPC was compared with conventional concrete. The test results indicate that BA GPC developes a strong passive layer against chloride ion diffusion and provides better protection against corrosion. Both the initial and final rates of water absorption of BA GPC were about two times less than those of conventional concrete. The BA GPC significantly enhanced performance over equivalent grade conventional concrete (CC).
PL
W przypadku proponowania oraz dostosowywania popiołu dennego jako materiału źródłowego w betonie geopolimerowym, ważne jest, aby oprócz jego właściwości wytrzymałościowych, zapewnić jego wydajność w odniesieniu do aspektów trwałości. Jak wynika z poprzednich badań, należy rozumieć, iż istnieje luka w pewnym wykorzystywaniu betonu geopolimerowego na bazie popiołu dennego. W związku z tym, w niniejszej pracy zbadano wydajność betonu geopolimerowego na bazie popiołu dennego pod kątem przyspieszonej korozji, sorpcyjności oraz absorpcji wody. W odniesieniu do proporcji mieszanki, klasa betonu została zaprojektowana dla 40 MPa. Do wywołania reakcji geopolimerycznych zastosowano aktywatory chemiczne na bazie sodu. Ilość roztworu chemicznego została przyjęta jako 0,5-krotność masy materiału źródłowego. Zachowanie betonu geopolimerowego na bazie popiołu dennego porównano z typowym betonem cementowym. Badania wytrzymałościowe wskazują, że beton geopolimerowy na bazie popiołu dennego wykazał większą wytrzymałość niż beton cementowy. Podczas gdy kilku badaczy zaleca utwardzanie termiczne w celu aktywacji betonu geopolimerowego, na tym etapie można stwierdzić, że beton geopolimerowy na bazie popiołu dennego osiągnął wytrzymałość przy utwardzaniu w temperaturze otoczenia. Ze względu na przyspieszoną korozję, czas rozpoczęcia korozji betonu geopolimerowego na bazie popiołu dennego został wydłużony 1,76 razy w porównaniu z betonem cementowym. Beton geopolimerowy na bazie popiołu dennego tym samym zwiększył bardziej katodową reakcję oraz zmniejszył aktywność korozyjną ze względu na wzmocniony proces reakcji polimerowej. Ze względu na efekt wypełniacza mikrocząsteczek popiołu dennego, a także reakcję geopolimeryzacji pomiędzy popiołem dennym a aktywatorami alkalicznymi, betonowi geopolimerowemu na bazie popiołu dennego przypisano wyraźnie niższą sorpcyjność. Natomiast wyższa wytrzymałość na ściskanie betonu geopolimerowego na bazie popiołu dennego wykazała niższą absorpcję wody. Można zatem stwierdzić, że beton geopolimerowy na bazie popiołu dennego utwardzony w temperaturze otoczenia jest uznawany za wysoce wytrzymały materiał kompozytowy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.