The objective of this paper is to study the properties of different compositions of concrete made by substituting sand made of crushed limestone, which is over-exploited in Algeria, by two types of sands produced by the recycling of double-layer tiling and granite waste, respectively, with different mass percentages of 0, 10, 20 and 30%. The physical, mechanical and some aspects of the durability properties of six concretes were evaluated and compared to those of a reference concrete. The results obtained show that the incorporation of granite sand up to a rate of 20% improves the compressive strength and the resistance to acid CH3COOH. For concretes made with tiling sand, the best compressive strength was observed in concrete with an addition rate of 10%. Furthermore, good tensile strength by splitting is obtained with rates of up to 30% of the two recycled sands.
This work revolves around the study of the partial substitution of cement by biomass ash (residue generated during incineration of wood waste) in mortar. The introduction of wood ash in the cement formulation allows solving some problems related to the lack of construction materials and protecting the environment. To carry out this work we have introduced wood ash as an addition which partially substitutes cement at three different replacement percentages (5%, 10% and 15%). We carried out tests on mortar in the fresh state (consistency, density and occluded air); evaluated its performance in the hardened state (compressive and flexural tensile strength), dimensional stability and its durability (water absorption by immersion and by capillarity as well as resistance to chlorides and acidic environments followed by XRD). Results obtained will be compared with the results of control samples with 0% substitution rate. The results of this valorisation show that the incorporation of 5% of ash fillers in the cement improves mechanical resistance as well as certain durability parameters.
This paper studies the use of cockle shell as supplementary cementitious materials SCMs as substitute for cement. The cockle shells generally have a high CaO content which can alter the behavior and the properties of mortars and concrete. Cockle shell is used with weight ratios of 5, 10, 15 and 20% to formulate a mortar with cockle shell and a control mortar CM with 0% of cockle shell. The properties in the fresh state, the mechanical strength and the weight loss test as well as the depth of penetration of each mixture were carried out through the conducted experiments. Consistency and density of fresh mortars were determined, the results obtained showed that cockle shell have a significant influence on the properties of mortars in the fresh state. The different results of hardened mortars show that the introduction of cockle shell tends to accelerate the development kinetics of strength at the young age but its ratio cannot be above of 5%. Mortar with 10% presented the lower depth penetration, the loss weight increased proportionally with the increasing of cockle shell amount.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.