W artykule przedstawiono technologię wytwarzania terahercowych laserów kaskadowych z warstwami metalicznymi pełniącymi rolę płaszczy falowodów. Obszar aktywny tych laserów składa się z 228 powtórzeń modułu zbudowanego ze sprzężonych studni potencjału Al0,15Ga0,85As/GaAs. W pracy przedstawiono pełny cykl technologiczny wytwarzania lasera terahercowego, obejmujący osadzanie warstw metalicznych, łączenie obszarów aktywnych laserów z podłożem zastępczym, usuwanie podłoża i warstwy stopującej (warstwy AlAs zatrzymującej trawienie podłoża GaAs, pełniącej funkcję technologiczną podczas usuwania podłoża) i następnie formowanie falowodu grzbietowego. Według tego schematu technologicznego wykonano trzy serie laserów, w których zastosowano różne płaszcze metaliczne (5 nm Ti/ 300 nm Au; 5 nm Ti/ 300 nm Cu; 5 nm Ti/ 300 nm Ag). Uzyskane lasery charakteryzowały się gęstościami prądu progowego na poziomie Jth ~ 1,2 kA/cm2 oraz maksymalną temperaturą pracy Tmax=140 K.
EN
In the paper, the fabrication of terahertz quantum cascade lasers equipped with metallic layers playing the role of waveguide claddings is presented. Its operation is based on 3-quantum-well (3QW) modules, where the GaAs QWs are separated by Al0.15Ga0.85As barriers. The laser's active region is built by stacking the 228 modules. The scheme of processing of THz QCLs with metal – metal waveguides is shown, covering metal layer deposition, wafer bonding, removing of the substrate with etch stop layer (an AlAs layer used for terminating of the GaAs substrate etching, so playing the technological role during the substrate removal process). The fabrication of ridge structure is also presented. According to this scheme three series of the lasers were fabricated. The lasers with 5 nm Ti/ 300 nm Au, 5 nm Ti/ 300 nm Cu, 5 nm Ti/ 300 nm Ag as waveguide layers were made. The fabricated lasers have threshold current densities Jth ~ 1.2 kA/cm2 and the maximum operating temperature was Tmax = 140K.
Omówiono konstrukcję, technologię i parametry dwóch nowych typów detektorów do systemu detekcyjnego ALBEGA (ALfa – BEta – GAmma) budowanego w GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (GSI), przeznaczonego do badań nad transaktynowcami. Detektor alfa stanowi 64-elementowa przepływowa matryca monolityczna zbudowana z dwóch płytek krzemowych o typie przewodnictwa ν, w których wytrawiony jest kanał, przez który przepływają (w gazie nośnym) badane substancje. Od strony kanału na całej powierzchni płytek wytworzony jest techniką dyfuzji fosforu obszar n+ (wspólna katoda). Na stronie przeciwległej do kanału wytworzone są techniką selektywnej dyfuzji boru 32 złącza p+-ν. Po połączeniu płytek powstaje szczelny kanał (przewód gazowy). Do jednego z końców tego przewodu doprowadzany jest gaz nośny (hel) zawierający atomy badanych pierwiastków promieniotwórczych. Gaz ten przepływa przez kanał. Promieniowanie jonizujące, emitowane przez atomy transportowane w gazie nośnym wnika do krzemu. Nośniki ładunku generowane w krzemie przez absorbowane promieniowanie (głównie cząstki alfa) są rozdzielane przez najbliższe złącze p+-ν, powodując powstanie sygnału elektrycznego. Promieniowanie beta i gamma przechodzi przez krzem i może być detekowane przez detektory odpowiednio umieszczone na zewnątrz przepływowego detektora cząstek alfa. Detektor beta stanowi monolityczna, 32-elementowa matryca o średnicy obszaru czynnego 90 mm, o grubości 0,9 mm. Materiałem wyjściowym jest wysokorezystywna płytka krzemowa typu ν. Na górnej stronie tej płytki wykonane są poprzez dyfuzję boru 32 planarne złącza p+-ν. Na dolnej stronie wykonany jest na całej powierzchni, poprzez dyfuzje fosforu, obszar n+, stanowiący wspólną katodę.
EN
The paper presents the design, technology and parameters of two new types of silicon detectors for the new detection system ALBEGA (ALfa – BEta – GAmma). The ALBEGA system will be used for research on transactinide elements at the GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (GSI) The alpha detector is a 64-element silicon monolithic flow array. The array consisting of two ν-type silicon wafers with a channel etched into them, through which the studied substances flow (in carrier gas), is used in the detector. An n+ region (common cathode) is formed by the phosphorous diffusion over the entire surface of the wafers from the side of the channel. 32 p+ regions (anode regions) are formed by selective boron diffusion on the side opposite to the channel. After the wafers are bonded, an gas-tight channel (gas pipe) is formed. Carrier gas (noble gas or a mixture of noble gas and reactive gas) containing atoms of radioactive elements under study is introduced into one end of this pipe. The gas flows through the channel and exits at the other end of the pipe. The transported active atoms/molecules are adsorbed inside the pipe and undergo the radioactive decay. The ionising radiation emitted by the atoms transported by the carrier gas penetrates into silicon. The charge carriers generated in silicon by absorbed radiation (mainly alpha particles) are separated by the nearest p+-ν junction, creating an electric signal. Beta and gamma radiation passes through silicon and can be detected by the detectors appropriately placed outside the flow alpha detector. The beta detector consists of a monolithic 32-element array with an active area diameter of 90 mm and a thickness of 0.9 mm. The starting material is a high-resistivity n silicon wafer. 32 planar p+-ν junctions are formed by boron diffusion on the top side of the wafer. On the bottom side, an n+ region, which forms a common cathode, is formed on the entire surface by phosphorus diffusion.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W niniejszej pracy została przedstawiona technologia elektrochemicznego nakładania warstw polianiliny (PANI) na elektrody złote oraz pomiary analityczne stężenia kwasu askorbinowego (AA) w buforowanym roztworze wodnym wykonane metodą woltamperometrii cyklicznej i chronoamperometrii z wykorzystaniem elektrod złotych i Au/PANI. W przypadku czujników z elektrodami pracującymi - Au/PANI, sygnał analityczny był znacznie wyższy od sygnału analitycznego uzyskanego za pomocą elektrod złotych, a potencjał prądu piku utleniania znacznie niższy.
EN
This paper describes the technology of electrochemical deposition of polyaniline (PANI) layer on gold electrode, and the analytical determination of ascorbic acid (AA) in buffer solution by cyclic voltammetry and chronoamperommetry with fabricated gold and Au/PANI electrodes. In the case of sensors with Au/PANI electrodes, analytical signal was much higher then for the bare Au electrodes, while the oxidation potential peak was much lower.
Opracowane zostały trzy rodzaje sensorów woltamperometrycznych na podłożach mono-Si. W pracy opisano proces technologiczny ich wytwarzania. Zaprezentowano zdjęcia skaningowe powierzchni Au i AgCl oraz zdjęcia struktur sensorowych. Struktury zostały scharakteryzowane elektrochemicznie w testach redoks.
EN
Three types of voltamperometric chemical sensors have been developed on mono-Si substrates. A process of fabrication is described in the paper. Au and AgCl surface SEM examination together with sensor chip images are presented. Chips have been electrochemically characterized in redox tests.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule przedstawiono procesy technologiczne mikroinżynierii krzemowej wykorzystane do wytwarzania przyrządów opracowywanych w ramach projektu MNS-DIAG. Kluczowymi procesami dla wytwarzania opracowywanych w ramach tego projektu demonstratorów są: głębokie plazmowe trawienie podłoża krzemowego, procesy łączenia płytek podłożowych z innymi płytkami krzemowymi, ceramicznymi lub szklanymi, procesy elektrochemicznego osadzania metali szlachetnych oraz procesy nakładania i kształtowania warstw polimerowych.
EN
The development of silicon technology over the last few decades has enabled production of complex integrated circuits and has also contributed to the development of microsystems containing sensors, actuators, and signal processing circuits. Currently, microsystems based on silicon technology, complemented by processes specific to MEMS technology, are widely used in both automotive as well as in chemistry, biology or medicine. The paper presents processes used to manufacture silicon microsystems developed in the fame of the project “Microsystems for biology, chemistry and medical applications”. The project goal is to develop a range of biomedical devices and chemical sensors: lab on a chip for determination of psychotropic drugs in saliva samples, diagnostic instruments for analysis of body secretion for fertility and pathological states monitoring, diagnostic instruments for evaluation of bovine embryos, microreactors for cell culture, arrays of chemical sensors for detection of Gramnegative bacteria and MEMS for medical diagnostic equipment. Key manufacturing processes used for fabrication of these devices are: deep plasma etching of silicon substrate, bonding of silicon, ceramic or glass substrates, electrochemical deposition and patterning of noble metals and coating and patterning of polymer layers on silicon and glass substrates.
Tremendous progress of microelectronic technology observed within last 40 years is closely related to even more remarkable progress of technological tools. However it is important to note, that these new tools may be used for fabrication of diverse multifunctional, integrated structures as well. Such devices, called MEMS (Micro-Electro-Mechanical-System) and MOEMS (Micro-Electro-Opto-Mechanical-System) integrate microelectronic and micromechanical structures in one system enabling interdisciplinary application, with most interesting and prospective being micro- and nanoscale investigations. In this paper, authors present some issues on heterogeneous microsystems design and manufacturing. Examples of various applications of microelectronic technology for fabrication of microsystems which may be used for micro- and nanoscale application are also presented.
PL
Obserwowany na przestrzeni ostatnich 40 lat postęp w dziedzinie technologii mikroelektronicznych związany jest bezpośrednio z rozwojem i powstawaniem nowych narzędzi technologicznych. Należy zaznaczyć, iż narzędzia te przyczyniły się również do powstania szeregu różnorodnych, wielofunkcyjnych, zintegrowanych struktur. Struktury (przyrządy) te, nazywane MEMS (ang. Micro-Electro-Mechanical-System) lub MOEMS (ang. Micro-Electro-Opto-Mechanical-System integrują w ramach jednego systemu elementy mikromechaniczne i mikroelektroniczne, co otwiera wiele nowych interdyscyplinarnych zastosowań jak np. badania w mikro- i nanoskali. W artykule autorzy przedstawiają wybrane zagadnienia związane z projektowaniem i wytwarzaniem tego typu heterogenicznych mikrosystemów. Ponadto w artykule przedstawione zostały przykłady wykorzystania technologii krzemowej do wytworzenia mikrosystemów oraz ich zastosowania w mikro- i nanoskali.
Artykuł obejmuje przekrój zagadnień związanych z mikroprzepływowymi amperometrycznymi immunoczujnikami. Wymienione zostały przykładowe technologie i materiały konstrukcyjne używane do budowy mikroprzepływowych modułów i elektrod oraz immunoenzymatyczne metody analityczne stosowane w immunoczujnikach, takie jak ELISA i ELISPOT. Zostały również przedstawione zagadnienia związane z przepływem w systemach mikroprzepływowych. Opisano technologię matryc z SU-8, struktur mikroprzepływowych wykonanych z PDMS-u oraz laminowanych elektrod Au/Ti na podłożu polimerowym. Uzyskano szczelne mikroprzepływowe układy ze złotymi elektrodami na podłożu z PDMS. Dzięki zastosowaniu trawienia jonowego podłoża przed napyleniem warstw metali oraz zastosowaniu pośredniej warstwy tytanowej, elektrody wykazują dobrą adhezję do podłoża. Dodatkowo została zastosowana warstwa PDMS-u, chroniąca ścieżki metalizacji przed pękaniem, w której plazmowo wytworzono okienka kontaktów elektrycznych i elektrod aktywnych elektrochemicznie. Elektrody charakteryzowały się małą rezystancją elektryczną, choć nie uzyskano zadawalającej powtarzalności ich wykonania. Struktury mikroprzepływowe wraz z elektrodami mogą być zastosowane w amperometrycznym immunoczujniku do pomiaru różnych antygenów, w zależności od użytych immunoreagentów m.in. do pomiaru stężenia fibrynogenu we krwi, w celu określenia ryzyka wystąpienia udaru niedokrwiennego mózgu oraz chorób układu krążenia.
EN
This paper describes some problems related with microfluidic amperometric immunosensors. It contains brief review of technology and constructive materials for microfluidic systems and electrodes. In addition, immunoenzymatic analytical methods like: ELISA and ELISPOT as well as some flow phenomena in microfluidic environment are presented. Polymeric SU-8 masters, PDMS-based microfluidic structures and laminated Au/Ti electrodes on polymeric substrates were fabricated. The microfluidic structures were successfully bonded after oxygen plasma surface activation. Thanks to applying reactive ion etching prior Au sputtering and Ti adhesive layer deposition, the Au/Ti electrodes exhibited a very good adhesion. After patterning, the electrodes were protected by a thin PDMS layer. Openings for electrodes and electrical contact pads were etched by (SF₆ + O₂) plasma. The electrodes had a good electrical conductivity but rather poor reproducibility. The microfluidic structures can be applied in amperometric immunosensor to measure concentration of different antigens e.g. concentration of fibrinogen in blood for evaluation of brain stroke and cardiovascular diseases risk.
In this work a simple and fast method of phosphates determination involving molybdenum blue has been presented. The procedure was adapted for microfluidic system under optimised experimental conditions (flow rate, temperature, wavelength). Moreover, a useful technology for the fabrication of microfluidic equipment has been proposed. Variously shaped microchannel structures were made of poly(methylmetacrylate) (PMMA) or poly(dimethylsiloxane) (PDMS) plates finely engraved with a laser beam. PDMS wafers, after their superficial oxidation in oxygen plasma, were used for sealing the channel structure. The microfluidic module outlet was connected to a Z-shape spectrophotometric flow cell used for optical detection.
PL
W artykule przedstawiono szybką i prostą metodę oznaczania jonów fosforanowych(V), opartą na reakcji tworzenia błękitu molibdenowego. Procedura analityczna została dostosowana do zaprojektowanego przez autorów mikroukładu, w którym przed właściwymi oznaczeniami przeprowadzono szereg pomiarów w celu optymalizacji parametrów eksperymentalnych, takich jak szybkość przepływu medium przez mikroukład, temperatura mikro-reaktora, długość fali. W pracy zaproponowano również technologię wykonania mikroukładów polimerowych. Struktury mikrokanatów w płytkach z polimetakrylanu metylu (PMMA) oraz polidimetylosiloksanu (PDMS) wykonano przez grawerowanie laserowe. Mikroukład uszczelniono poprzez trwałe zespolenie dwóch płytek polimerowych, których powierzchnie poddano działaniu plazmy utleniającej. Detekcję prowadzono w zaprojektowanej przez autorów spektrofotometrycznej kuwecie przepływowej, przystosowanej do pomiarów z wykorzystaniem światłowodów.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.