Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In order to understand the effects of ultraviolet-B (UV-B) radiation and salinity stress on the visual quality and morphological parameters, one-year-old seedlings of rosemary (Rosmarinus officinalis L.) were grown under three UV-B levels (0, 4.32, 6.05 kJ m-2 d-1) and four salinity regimes (Control, 50, 100 and 150 mM NaCl) under greenhouse conditions. The results showed that enhanced UV-B radiation increased visual quality, growth index, plant biomass, shoot/root ratio, number of branches and leaves, leaf fresh and dry weight, leaf area index, specific leaf area, leaf thickness. The UV-B radiation had no significant effect on root length; however, shoot height, length of axillary shoots, length of inter node, leaf area, leaf length and width and concentration of chlorophyll b were negatively impacted by the UV-B radiation. On the other hand, salinity caused a significant decrease in plant biomass, root length, shoot height, shoot/root ratio, length of axillary shoots, length of inter node, number of branches and leaf area, leaf area index, leaf length and width, leaf fresh and dry weight, specific leaf area and concentration of Photosynthetic pigments. However, the number leaves and leaf thickness significantly increased under NaCl salinity treatments. Visual quality and growth index were hardly affected by increasing salinity until 100 mM, but declined clearly at 150 mM NaCl salinity. The interaction between UV-B irradiation and salinity showed that pre-treatment with UV-B irradiation alleviated the harmful effects of NaCl and improved the visual quality rosemary plants.
EN
Plants are exposed to solar ultraviolet radiation due to use of sunlight for photosynthesis. Additionally, salinity in soil or water influences the plant productivity and quality considerably. Moreover, when plants are simultaneously exposed to multiple stresses, one form of stress can affect the response to other stress. Particularly, it has been shown that they can benefit from dual tolerance as salinity and UV-B radiation are applied together. In order to understand the effects of UV-B radiation and salinity stress on some physiological and biochemical parameters, one-year-old cuttings of rosemary plants were grown under different levels of ultraviolet B radiation (0, 4.32 and 6.05 kJ m-2 d-1) and salinity stress (control, 50, 100 and 150 mM NaCl). The results showed that 4.32 kJ m-2 d-1 UV-B treatment significantly increased plant biomass up to 17.9% as compared to control. However, by increasing salinity to 150 mM, plant biomass significantly decreased up to 18.1%, as compared to control. Regardless of UV-B treatments, plants, grown under 100 mM salinity stress, had produced 2.8 times higher total phenolic compounds (TPC) and also have greater antioxidant activity (33.1%) in comparison to control. Both treatments, enhanced UV-B radiation and salinity stress, significantly increased the concentration of proline, hydrogen peroxide (H2O2) and malondealdehyde (MDA). In relation of total soluble sugar (TSS) and ion content, both treatments acted in an opposing manner. In turn, the enhanced UV-B radiation decreased concentration of TSS and the Na+ content in leaves, salinity stress increased the concentration of TSS, as well as the Na+ content in leaves and root. The plants grown under 150 mM salinity level accumulated 5.32 and 2.83 times higher Na+ ions in leaves and roots, respectively, than control. In addition, salinity significantly decreased the relative water content (RWC), photosynthetic pigments and K+ content in leaves and roots. The interaction between UV-B irradiation and salinity showed that the UV-B radiation improved the K+ content in leaves, RWC and membrane stability and consequently resulted in a better tolerance of rosemary to salinity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.