Let (Xn)n∈N and (Yn)n∈N be two sequences of i.i.d. random variable ξ which are independent of each other and all have the distribution of a positive random variable ξ with density fξ . We study weighted strong laws of large numbers for the ratios of the form [wzór]1 in the cases when IEξ = ∞ or limx→0+ fξ (x) = 0 or fξ is unbounded. This research complements some results known so far.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We examine order statistics from a two-sided Pareto distribution. It turns out that the smallest two order statistics and the largest two order statistics have very unusual limits. We obtain strong and weak exact laws for the smallest and the largest order statistics. For such statistics we also study the generalized law of the iterated logarithm. For the second smallest and second largest order statistics we prove the central limit theorem even though their second moment is infinite.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.