Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
As neuron models become more plausible, fewer computing units may be required to solve some problems; such as static pattern classification. Herein, this problem is solved by using a single spiking neuron with rate coding scheme. The spiking neuron is trained by a variant of Multi-objective Particle Swarm Optimization algorithm known as OMOPSO. There were carried out two kind of experiments: the first one deals with neuron trained by maximizing the inter distance of mean firing rates among classes and minimizing standard deviation of the intra firing rate of each class; the second one deals with dimension reduction of input vector besides of neuron training. The results of two kind of experiments are statistically analyzed and compared again a Mono-objective optimization version which uses a fitness function as a weighted sum of objectives.
EN
Grammatical Evolution (GE) is a form of Genetic Programming (GP) based on Context-Free Grammar (CF Grammar). Due to the use of grammars, GE is capable of creating syntactically correct solutions. GE uses a genotype encoding and is necessary to apply a Mapping Process (MP) to obtain the phenotype representation. There exist some well-known MPs in the state-of-art like Breadth-First (BF), Depth-First (DF), among others. These MPs select the codons from the genotype in a sequential manner to do the mapping. The present work proposes a variation in the selection order for genotype’s codons; to achieve that, it is applied a random permutation for the genotype’s codons order-taking in the mapping. The proposal’s results were compared using a statistical test with the results obtained by the traditional BF and DF using the Symbolic Regression Problem (SRP) as a benchmark.
EN
This research discusses the application of two different clustering algorithms (agglomerative and partitional) to a set of data derived from the phenomenon of the collaborative economy in the tourism industry known as Airbnb. In order to analyze this phenomenon, the algorithms are known as “hierarchical Tree” and “K-Means” were used with the objective of gaining a better understanding of the spatial configuration and current functioning of this complimentary lodging offer. The city of Guanajuato, Mexico was selected as the case for convenience purposes and the main touristic attractions were used as parameters to conduct the analysis. Cluster techniques were applied to both algorithms and the results were statistically compared.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.