Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents a model which allows to estimate the elastic properties of thin-walled structures manufactured by means of injection molding. The starting point is the numerical prediction of the microstructure of a short fiber reinforced composite induced during the filling stage of the manufacturing process. For this purpose the commercial program Moldflow Plastic InsightŽ (MPI) is used. The result of the filling simulation characterizing the fiber microstructure is a second rank orientation tensor. The elastic material properties after the processing are locally dependent on the orientational distribution of the fibers. The constitutive model is formulated by means of the orientational averaging for the given orientation tensor. The tensor of elastic material properties is computed and translated into the format suitable for the stress-strain analysis based on the ANSYSŽ finite element code. The influence of technological manufacture parameters on the microstructure and the elastic properties is discussed with the help of two examples a center-gated disk and a shell of revolution.
EN
Many engineering components of structures operate at temperatures high enough for creep to be an important design consideration. The paper formulates time-dependent constitutive equations including higher order effects of deformations.
EN
The solution procedure proposed by Vlasov based on the reduction of the basic two-dimensional boundary value problems into ordinary differential equations provides a good accuracy in the case of rectangular domains with small size ratios. The paper presents an extension of this method applied to rectangular Kirchhoffs plates in connection with the iterational scheme. The results are compared with analytical solutions available for rectangular plates with simplified boundary conditions and loading. The possibilities of application of the solutions for simple plate geometry to complex plate problems (e. g. complex geometry, boundary conditions) are discussed and illustrated by numerical examples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.