Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Flap peening (FP) is a cold working technique used to apply a compressive force using small shots, this will lead to enhance the surface properties that it can sustain for long life during working conditions. In this study, several aircraft aluminum alloys materials namely; 2219 T6, 2024 T6, 7075 T6, and 6061 T6 were flap peened under different rotational speeds. The effect of rotational speed on the average surface roughness (Ra) and average surface micro hardness have been investigated. As seen by the Scanning Electron Microscope SEM phots that the hardness of peened layer is increased. It was found that as the flap peening speeds increase the percent change in surface roughness (Ra) increases, and the percent change in surface micro hardness decreases. The maximum increase in Ra occurs in 2219 T80 and the minimum in 6061 T6 alloys, and for hardness, it is reported that the maximum occurs in 6061 T6 and the minimum in 2019 T80 alloy.
EN
This paper investigates the effect of employing an inerter on the performance of active suspension systems. A quarter-car model with cubic-nonlinear spring is considered. The inerter is installed in parallel with the primary suspension spring and damper. First, feedback linearization (FBL) is used to linearize the mathematical model. Then the linear quadratic regulator (LQR) is adopted to control the suspension system. The proposed design is ride comfort-oriented and considers structural constraints. Numerical simulations are executed for passive systems with different values of inertance. Results show that employing an inerter to the passive suspension can improve the ride comfort performance by more than 32%. Employing an inerter to active suspension systems can also improve the ride comfort and reduce actuator force significantly. The actuator force can be reduced by 25%. However, the results also show that the uncaring selection of the inerter can dramatically degrade the performance of the suspension system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.