Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The break-up of liquid ligaments and formation of droplets are elementary phenomena in multiphase flows which are of high importance in industrial and medical applications. From the numerical point of view, they require proper interface and surface tension treatment. In the present work, we apply Smoothed Particle Hydrodynamics, a meshless approach, to simulate the break-up of a liquid cylinder inside the gaseous phase, i.e. the Rayleigh-Plateau instability. Results obtained in 3D show that even a relatively coarse resolution allows one to predict correctly the size of droplets formed in the process. The detailed analysis of the break-up time in 2D setup implies that a certain level of spatial discretisation needs to be reached to determine this moment precisely.
EN
Smoothed Particle Hydrodynamics (SPH) is a fully Lagrangian, particle-based technique for fluid-flow modeling. As a gridless method, it appears to be a natural approach to simulate multi-phase flow with complex geometries. Since SPH involves a large set of short-range particle-particle interactions, numerical implementations present a high degree of spatial data locality and a significant number of independent computations. Therefore, the numerical code can be easily written in a massively parallel manner. The main purpose of this study is to discuss the issues related to the implementation of the SPH method for computation using Graphics Processing Units (GPU). The study is supported by two-dimensional validation cases: the lid-driven cavity and oscillation of a droplet. The obtained results show a good accuracy of the method, as well as, high numerical efficiency of its GPU implementation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.