The extraction of olive pomace oil is a significant aspect of the edible oil industry in Mediterranean regions where olives are widely cultivated. The resulting wastewater generated from this industry is known to harbor pollutants, including residual solvents, oils, and chemicals from the refining process, that can have adverse effects on the environment and public health. Peroxy-electrocoagulation (PEC) is a method that can be used to treat wastewater from the olive pomace oil extraction industry. The purpose of the work was to reduce the concentration of pollutants in the effluent through the use of PEC with aluminum electrodes as a method of treatment. The Box-Behnken Design was used to study the relationship between hydrogen peroxide dosage (10, 20, and 30 g L-1 ), electric current density (5, 20 and 35 mA cm-2 ), and the initial pH (2.5, 3.5, and 4.5), in the PEC process, and the removal of chemical oxygen demand (COD) and total phenolic compounds (TPh). The highest removal was obtained with hydrogen peroxide dosage of 30 g L-1 , and 20 mA cm-2 , and with 29% of TPh removal at pH 2.5, and with 84% COD removal at pH 4.5. The procedure removed an average of 22% COD and 82% TPh. The concentration of hydrogen peroxide was one of the most significant factors in the process. Pre-treatment with other techniques is necessary to reduce harmful elements in the effluent before undergoing biological treatment.
This study aimed to assess the effectiveness of peroxy-electrooxidation (PEO) for treating wastewater from the olive pomace oil extraction industry. The response surface methodology was utilized to optimize the efficiency of the PEO process under varying conditions of electrolysis time, current density, and hydrogen peroxide (H2O2) dosage. Appling graphite/aluminum sheets as cathode/anode in the treatment process showed that the concentration of H2O2 directly affected the efficiency of total phenolic compounds (TPh) removal. It was observed that at an H2O2 concentration of 15 g L-1, the removal efficiency was less than 80%. The removal of chemical oxygen demand (COD) is mainly influenced by the dosage of H2O2 and the reaction time. The experiments conducted on the PEO processes with graphite/iron sheets showed that the highest removal of TPh was achieved with an H2O2 dosage of 30 g L-1 and an intermediate reaction time of 30 minutes. Current density also had an impact on TPh removal. Regarding COD removal, the results showed that the highest removal rates were attained with increased H2O2 concentrations, but reaction time was a positive factor, with better results obtained with 30 and 50 minutes. The PEO is recommended as a pre-treatment for TPh removal but not for COD and other treatment processes should be evaluated.
Wastewater generated during the production of pomace olive oil is complex and highly variable due to different cultivation and processing characteristics. It has a high toxic organic load, low pH, and high chemical and biological demands. To reduce the concentration of chemical oxygen demand (COD) and total phenolic compounds (TPh) in pomace olive oil wastewater, several treatment processes have been studied. These include: (i) coagulation/flocculation, (ii) electrocoagulation, (iii) peroxy-electrocoagulation, (iv) electrochemical peroxidation, (v) Fenton, (vi) electro-Fenton, (vii) photo-Fenton, and (viii) adsorption. Coagulation/flocculation and electrocoagulation resulted in a maximum COD removal of 16%, while techniques involving the addition of hydrogen peroxide (iii-vii) had an average of 78% TPh removal but only 20% COD removal. Adsorption resulted in a maximum of 29% COD and 75% TPh removal. None of the tested techniques were able to remove more than 50% of COD, indicating the difficulty of removing organic matter in this effluent. However, advanced oxidation techniques were effective in degrading phenolic compounds, although they required relatively high dosages of oxidant.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.