The Al-Najaf state is witnessing an increased economic development and attracting more investments that require the development of new areas and exploring new water resources. This study evaluates the quality of 12 surface water samples and groundwater from 12 wells for irrigation according to the salinity and sodicity hazards based on electrical conductivity (EC) and sodium adsorption ratio (SAR). In addition, the concentrations of radionuclides, which include Thorium (232Th), Uranium (238U), Potassium (40K) and Cesium (137Cs) were tested in four soil samples in the study area. It was found that the average values of pH, total hardness, Na, Ca, Mg, K, Cl, SO4, NO3 for groundwater and surface water were 8 and 6, 2287 and 4006 mg/L, 1140 and 1232 mg/L, 378 and 637 mg/L, 327 and 587 mg/L, 2 and 2 mg/L, 989 and 2007 mg/L, 1149 and 1325 mg/L, as well as 2 and 2 mg/L, respectively. From salinity and sodicity hazards analysis, the groundwater had EC of 5242 µS/cm and SAR of 61, whereas surface water had EC of 6253 µS/cm and SAR of 50. Furthermore, the concentrations of radionuclides, i.e. 232Th, 238U, 40K and 137Cs in the soil samples were found to be 11.02, 34.12, 544.45, and 1.6 Bq/kg, respectively. The concentrations of radionuclides were within the worldwide baseline, expect for 40K. The study concluded that both water sources are classified as very high salinity and sodium water (class C4-S4), and it cannot be used for irrigation, only suitable for the salt tolerant crops.
The profile of microbial diversity in a NABR digesting RPMW was investigated using phylogenetic analysis of partial 16S rRNA sequences by a neighbor-joining-tree, supported by microbial morphology analysis by SEM. The results showed that microorganism inside NABR consisted of dominant Bacillus (25 strains) and Bacterium (1 strain) which were isolated from the settled sludge at the bottom of the reactor, whilst Bacillus (2 strains), Pseudomonas (2 strain) and Chryseobacterium (2 strain) were isolated from the biofilm formed on the packing material. It revealed that the microbial community strains, function, and structure changed simultaneously throughout the reactor system. The microscopic results showed rich biofacies, while the dominant microorganisms have various morphologies in every compartment of the system. It consisted of a long rod-shaped and filamentous bacterium composed majorly of bacilli of different sizes. Although the study successfully analyzed the microbial diversity and morphology in the system, the microbial communities reported in this study were different from other similar studies. This may be caused by the application of a culture-based technique that usually provides limited information due to the number of barely cultivated or uncultured strains.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.