Purpose: This work aimed at evaluating the properties of the ethyl silicate-based coating that can be applied on low carbon steel. Design/methodology/approach: Two mixture ratio types (2:1, and 3:2) of resin and hardener respectively were used to prepared two specimen models (A and B). Findings: It found that some mechanical properties (tensile, hardness, and impact strength) of ethyl silicate resin were evaluated according to standard criteria. Research limitations/implications: The effect of heat treatments at various temperatures (100, 150, and 200°C) and holding at different times (10, 20 & 30) min on hardness was investigated. Practical implications: Moreover, an open circuit potential corrosion test with a solution of 3.5% Sodium Chloride at room temperature and 60°C was used to determine the corrosion resistance of low carbon steel specimens coated with the two mixture types. Originality/value: The effects of mixture ratios (for resin and hardener) and heat treatment conditions on properties of ethyl silicate-based coating were studied. From obtained results, acceptable values of tensile, hardness, and toughness were recorded. Increasing heat treatment temperature and holding time leads to enhance hardness for both model types. An open circuit potential (OCP) tests show that there is an enhancement of protective properties of ethyl silicate coatings with mixture type B in comparison with type A was achieved. Generally, the results indicate that specimen model B has higher properties as compared with specimen model A.
Purpose: In this paper, the bending strength and buckling stability of (AA 7075-T6) aluminium plate weakened by many transverse cracks, which located at different positions, subjected to concentrated loads applied at the ends were analysed. Design/methodology/approach: Numerical modelling and calculation by the finite element method (ANSYS Package), for the critical load of bending and compression panel were estimated. Findings: It found that the variation of the critical stress in bending and buckling is proportional to the crack conditions (no. of crack and location). In general, the critical load in bending and buckling decreases with increasing the crack number in structure. Research limitations/implications: For both bending and buckling, two transverse cracks on one face of plate is more stable than two transverse cracks on opposite faces. Practical implications: In addition, many experimental tests were carried out by using an INSTRON test machine to obtain the buckling critical loads, where the experimental results were compared with the ones of the finite element method. Furthermore, bending strength was calculated theoretically for the cracked panel. Originality/value: Comparison between the experimental and numerical (FE based model) data and between the theoretical and nu-merical (FE based model) data for buckling and bending strength respectively indicate the precise and the simplicity of the developed models to determine the critical loads in such cases.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.