Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The performance of long-wave infrared (LWIR) x = 0.22 HgCdTe avalanche photodiodes (APDs) was presented. The dark currentvoltage characteristics at temperatures 200 K, 230 K, and 300 K were measured and numerically simulated. Theoretical modeling was performed by the numerical Apsys platform (Crosslight). The effects of the tunneling currents and impact ionization in HgCdTe APDs were calculated. Dark currents exhibit peculiar features which were observed experimentally. The proper agreement between the theoretical and experimental characteristics allowed the determination that the material parameters of the absorber were reached. The effect of the multiplication layer profile on the detector characteristics was observed but was found to be insignificant.
EN
The dual-band avalanche photodiode (APD) detector based on a HgCdTe material system was designed and analysed in detail numerically. A theoretical analysis of the two-colour APD intended for the mid wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges was conducted. The main purpose of the work was to indicate an approach to select APD structure parameters to achieve the best performance at high operating temperatures (HOT). The numerical simulations were performed by Crosslight numerical APSYS platform which is designed to simulate semiconductor optoelectronic devices. The current-voltage characteristics, current gain, and excess noise analysis at temperature T = 230 K vs. applied voltage for MWIR (U = 15 V) and LWIR (U = –6 V) ranges were performed. The influence of low and high doping in both active layers and barrier on the current gain and excess noise is shown. It was presented that an increase of the APD active layer doping leads to an increase in the photocurrent gain in the LWIR detector and a decrease in the MWIR device. The dark current and photocurrent gains were compared. Photocurrent gain is higher in both spectral ranges.
EN
This paper presents examples of infrared detectors with mercury cadmium telluride elaborated at the Institute of Applied Physics, Military University of Technology and VIGO Photonics S.A. Fully doped HgCdTe epilayers were grown with the metal organic chemical vapour deposition technique which provides a wide range of material composition covering the entire infrared range from 1.5 μm to 14 μm. Fundamental issues concerning the design of individual areas of the heterostructure including: the absorber, contacts, and transient layers with respect to their thickness, doping and composition were discussed. An example of determining the gain is also given pointing to the potential application of the obtained devices in avalanche photodiode detectors that can amplify weak optical signals. Selected examples of the analysis of current-voltage and spectral characteristics are shown. Multiple detectors based on a connection in series of small individual structures are also presented as a solution to overcome inherent problems of low resistance of LWIR photodiodes. The HgCdTe detectors were compared with detectors from III-V materials. The detectors based on InAs/InAsSb superlattice materials achieve very comparable parameters and, in some respects, they are even superior to those with mercury cadmium telluride.
EN
A theoretical analysis of the mid-wavelength infrared range detectors based on the HgCdTe materials for high operating temperatures is presented. Numerical calculations were compared with the experimental data for HgCdTe heterostructures grown by the MOCVD on the GaAs substrates. Theoretical modelling was performed by the commercial platform SimuAPSYS (Crosslight). SimuAPSYS fully supports numerical simulations and helps understand the mechanisms occurring in the detector structures. Theoretical estimates were compared with the dark current density experimental data at the selected characteristic temperatures: 230 K and 300 K. The proper agreement between theoretical and experimental data was reached by changing Auger-1 and Auger-7 recombination rates and Shockley-Read-Hall carrier lifetime. The level of the match was confirmed by a theoretical evaluation of the current responsivity and zero-bias dynamic resistance area product (R0A) of the tested detectors.
EN
Accurate determination of material parameters, such as carrier lifetimes and defect activation energy, is a significant problem in the technology of infrared detectors. Among many different techniques, using the time resolved photoluminescence spectroscopy allows to determine the narrow energy gap materials, as well as their time dynamics. In this technique, it is possible to observe time dynamics of all processes in the measured sample as in a streak camera. In this article, the signal processing for the above technique for Hg1-xCdxTe with a composition x of about 0.3 which plays an extremely important role in the mid-infrared is presented. Machine learning algorithms based on the independent components analysis were used to determine components of the analyzed data series. Two different filtering techniques were investigated. In the article, it is shown how to reduce noise using the independent components analysis and what are the advantages, as well as disadvantages, of selected methods of the independent components analysis filtering. The proposed method might allow to distinguish, based on the analysis of photoluminescence spectra, the location of typical defect levels in HgCdTe described in the literature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.