Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Reliable method of assessing fracture properties of asymmetric bonded joints
EN
Two methods of assessing fracture properties of adhesive joints were studied. Two wedge tests: with continuous deflection and with force measurements were compared. Asymmetric geometry of the bonded joint was considered, i.e. two different plates of aluminium alloys: Al-Cu and Al-Mg, were bonded with epoxy DGEBA adhesive. The analytical model is shown to estimate the values of fracture properties: crack position and critical fracture energy. It was found that both methods allow easy and reliable estimation and comparison of fracture properties, although some differences were observed.
2
Content available remote Facture energy of bonded joints with 2D elastic adhesive layer
EN
When bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the adhesive layer, usually, as not existing or 1D Hook elastic layer. In the case of 1D elastic layer, represented as Hooks spring element, is acting, only, in direction contrary to the applied load. Basing on the information yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint were measured, within this contribution, 2D Finite Element Method model is introduced. The FEM allows adhesive layer to be simulated as two perpendicular-acting Hook's springs, thus in-plane shear compliance is enabled. Subsequently, appropriate analysis were carried out. Results, in terms of plate deflection, were compared with laser profilometry technique and common analytical solutions. It is concluded that linear 1D model is not sufficient for the asymmetric bonded joint configuration since the adhesive resists actively also in the in-plane shearing direction. Omitting shearing compliance effect can lead to valuable misinterpretation of the fracture energy, up to 20% in cases studied, and thus, cannot be ignored. Finally, power law based, correction factors are given promising fast and reliable data correction.
EN
Crack propagation behavior was studied for aluminium/aluminum adhesive joints bonded with two epoxy adhesives: pure and reinforced with clay nanoparticles. The focus was also on the novel use of the constant displacement rate test to study adhesion/adhesives efficiency. The epoxy systems studied were: Epidian E6 produced from bisphenol A and epichlorohydrin, ("Organika -Sarzyna" Poland); pure or strengthened with montmorillonit nanoparticles (MMT). Crack growth rate was estimated for two displacement rates. The nanoparticle reinforced epoxy showed advantage over pure epoxy adhesive (Figs. 4,5). This effect was more pronounced at low deflection rates. The constant displacement rate test was found promising to study microstructural effects in adhesive joints.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.