This paper describes findings in the surface topography of Ti6Al4V alloy after finish turning process under dry and MQL (minimum quantity lubrication) machining. The research was fulfilled in the range of variable feeds per revolution of 0.005-0.25 mm/rev and cutting speeds of 40-100 m/min using the depth of cut of 0.25 mm that fits finish processing conditions. The test plan was developed on the way to use the Parameter Space Investigation (PSI) method. The topography features were measured by a Sensofar S Neox optical profilometer using the Imaging Confocal Microscopy technique. Ra parameters and surface roughness profiles as well as 2D images and contour maps were analyzed. Under the studied machining conditions, lower Ra roughness parameters are obtained in the feed rate of 0.005-0.1 mm/rev and cutting speeds of 40-60 m/min. In comparison with dry machining, up to 17% reduction in Ra parameter values was obtained using the MQL method and vc = 70 m/min and f = 0.127 mm/rev as well as vc = 47.5 m/min and f = 0.22 mm/rev. Depending on the machining conditions, peaks and pits as well as feed marks typical for the turning process are observed on the machined surfaces.
The paper presents evaluation of the surface topography obtained after turning of AISI 1045 steel with the use of cemented carbide tools diversified in terms of applied titanium-based coatings. During the research, three types of coatings deposited with the PVD method on a P25 sintered carbide insert were compared: nitride-titanium TiN, nitride-aluminum-titanium TiAlN and carbon-titanium TiC in a wide range of variable cutting speeds 125 - 325 m/min and variable feeds 0.05 - 0.25 mm/rev. The quality of the machined surface was assessed on the Sensofar S neox System optical profile meter using the confocal method. The paper presents the results of 3D parameters, contour maps, isometric views and material ratio curves. The surface topography analysis showed that for the TiAlN coated insert, lower surface roughness parameters were observed in the range of lower cutting speeds and higher feeds, while for higher cutting speeds, lower values of the selected 3D parameters were found for the insert with TiC coating. For the insert with TiC coating, the most even distribution of the valleys and ridges of the machined surface roughness was also observed. The research results determined the range of cutting parameters that allow the selection of the appropriate type of titanium-based coating when machining AISI 1045 steel.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.