Along with the rapidly growing demand and development activities in unconventional resources, is the growth of environmental awareness and concerns among the public. Foam, as an alternative to traditional drilling fluid, is gaining more and more momentum in the drilling industry. Drilling with foam can minimize formation damage, water usage, and drag and torque. Foam also costs less and leaves a much smaller environmental footprint than other commonly used drilling fluids, such as synthetic oil-based fluids, when developing vulnerable formations such as shale gas. As drilling in horizontal and near horizontal sections has become very common, and the need for such sections is increasing, it is very important to understand cuttings transport and hole cleaning issues when drilling with foam in such sections. A team from University of Tulsa Drilling Research Projects (TUDRP) conducted a series of experiments focused on studying the effects of change in hole inclination angle from 90 degrees to 70 degrees on cuttings transport with foam under Elevated Pressure and Elevated Temperature (EPET) conditions. This experimental and theoretical study also includes other influential parameters such as foam quality, foam flow rate, polymer concentration and drill pipe rotary speed. We have observed that there is no significant difference in cuttings concentration and frictional pressure losses as inclination changes from 70 to 90 degrees. Also, an increase in superficial foam velocity reduces cuttings concentration within the annulus. Pipe rotation influences cuttings concentration and frictional pressure losses for low quality foams, but does not have a significant effect on high quality foams. A correlation for the cuttings bed area and a computer simulator are developed for practical design and field applications. The predicted results are compared with experimental results from this study and previous studies. The comparison shows good agreement. We believe that the findings of this paper will help designers with the choice of optimal drilling fluid for drilling horizontal wells in unconventional (shale) gas/oil reservoirs.
PL
Równolegle ze stale rosnącym zapotrzebowaniem na prowadzenia prac udostępniających w złożach niekonwencjonalnych notuje się wzrost świadomości społecznej odnośnie zagadnień ochrony środowiska. Piana jako alternatywa dla tradycyjnej płuczki wiertniczej nabiera coraz większego znaczenia w górnictwie otworowym. Wiercenie przy użyciu piany pomogą ograniczać zniszczenia formacji geologicznych, redukuje zużycie wody, pozwala na zminimalizowanie oporów ruchu i momentów obrotowych silników. Ponadto, koszty piany są niższe a jej oddziaływanie na środowisko naturalne jest mniej znaczne niż w przypadku typowych płuczek opartych na olejach syntetycznych używanych w trakcie udostępniania trudnych w eksploatacji złóż, np. gazu łupkowego. Wiercenia odcinków poziomych lub prawie poziomych są już szeroko stosowane a zapotrzebowanie na takie odcinki wrasta, ważnym jest właściwe rozpoznanie problemów związanych z transportem urobku wiertniczego i czyszczeniem otworu w trakcie prowadzenia prac wiertniczych na tych odcinkach przy użyciu piany. Zespól badaczy z uniwersytetu w Tulsa zaangażowanych w projekt badawczy w dziedzinie wiertnictwa (TUDRP) przeprowadził serię eksperymentów mających na celu zbadanie wpływu zmiany kąta nachylenia otworu z 90 na 70 stopni na przebieg transportu urobku wiertniczego z wykorzystanie piany w warunkach podwyższonego ciśnienia i podwyższonych temperatur. Badania eksperymentalne i teoretyczne obejmowały także analizę pozostałych parametrów procesu: jakość piany, natężenie przepływu piany, stężenie polimerów, prędkość obrotowa przewodu wiertniczego. Nie stwierdzono znacznych różnic w stężeniu zwiercin ani utraty ciśnienia wskutek tarcia w trakcie zmiany kąta nachylenia z 90 na 70 stopni. Ponadto, dodatkowy wzrost prędkości ruchu piany prowadzi do zmniejszenia stężenia zwiercin w pierścieniu. Prędkość obrotowa przewodu wpływa na stężenie zwiercin i straty ciśnienia wskutek tarcia w przypadku stosowania pian niskiej jakości, efektu tego nie notuje się gdy wykorzystywane są wysokiej jakości piany. Dane z obszaru wiercenia skorelowane zostały z wynikami symulacji komputerowych do wspomagania projektowania i do wykorzystania w terenie. Prognozowane wyniki porównano z wynikami eksperymentów uzyskanymi w tym oraz w poprzednim programie badawczym. Porównanie to wykazuje dużą zgodność wyników. Mamy nadzieję, że wyniki obecnej pracy pomogą inżynierom projektantom w wyborze optymalnej płuczki wiertniczej do wierceń poziomych odcinków otworów przy eksploatacji niekonwencjonalnych złóż ropy i gazu (np. gazu łupkowego).
Tripping events are expensive and time-consuming. Thus, minimizing tripping time through choosing optimized tripping velocity becomes urgent. Surge or swab pressures in the wellbore and dynamic loading of drillstring will be generated during tripping. Also, dynamic velocity, which is the velocity at the bottom of drillstring, is different from the input velocity at surface. The effect of tripping velocity profile, i.e., tripping velocity changes with time, on the hook load, downhole pressure changes and drillstring dynamic velocity should be fully studied to achieve the optimization. In this study, the effects of tripping velocity profile on loading of drillstring, dynamic velocity and downhole pressure is investigated using numerical simulation. Bergeron's graphical method and Lubinski's approach are utilized to perform the simulations. Components of drillstring, wellbore depth, drillstring length and mud properties are also included in the simulations. Through the current work, a driller's typical way of changing tripping velocity may not be the best one. Selection of tripping velocity profiles should be adapted to depth: higher velocity, triangular/parabolic profiles in shallow wells and lower velocity, trapezoidal profiles in deep wells. Also, based on simulations, the oscillation magnitude of dynamic velocity can be as high as twice that of velocity at surface.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Three modeling approaches to the determination of equivalent circulating density (ECD) in Casing Drilling operations are considered in this study; viz., hook-load measurements, pump-pressure measurements and conventional hydraulic models. The bottom-hole pressure is obtained by adding the calculated annular pressure losses to the hydrostatic pressure. Since the annular clearance is very small in casing drilling, a narrow-slot flow approximation model is adopted that takes into account the effect of pipe rotation. A Yield-Power-Law (YPL) drilling fluid is considered in this study. Results from each of the three approaches are compared with experimental and field data. The differences between the calculated and measured bottom-hole pressures (hence ECD) are within a range of about [...]. In terms of the frictional pressure losses in the annulus, this range increases to about [...] in some instances. It is shown that pipe rotation plays an important role in determining ECD. The experimental data indicate an increase in the annular pressure losses with increasing pipe rotary speed. The hook-load measurements correlate well with flowing bottom-hole pressures.
PL
W artykule rozważono trzy podejścia do modelowań wykonywanych w celu określenia ekwiwalentnej gęstości cyrkulacyjnej (ECD) w operacjach wiercenia z równoczesnym rurowaniem); poprzez pomiary obciążenia haka, pomiary ciśnienia pomp oraz zastosowanie konwencjonalnych modeli hydraulicznych. Ciśnienie na dnie otworu otrzymywane jest przez dodanie obliczonych strat ciśnienia w przestrzeni pierścieniowej do ciśnienia hydrostatycznego. W przypadku rur okładzinowych wielkość przestrzeni pierścieniowej jest bardzo niewielka, dlatego zaadaptowano model wąskiej szczeliny, uwzględniający efekt rotacji rur. W artykule rozważano płuczkę opisywaną modelem reologicznym Herschela Bulkleya (YPL). Wyniki zastosowania wymienionych trzech podejść zostały porównane z danymi doświadczalnymi i terenowymi. Różnice pomiędzy wartościami ciśnienia obliczonego i zmierzonego na dnie otworu (a więc i ekwiwalentnej gęstości cyrkulacyjnej) pozostają na poziomie ok. [...]. W przypadku strat ciśnienia w przestrzeni pierścieniowej w niektórych przypadkach wartość ta ulega zwiększeniu do ok. [...]. Zwrócono uwagę, że rotacja rur odgrywa dużą rolę w określaniu ekwiwalentnej gęstości cyrkulacji. Dane doświadczalne wskazują na wzrost strat ciśnienia w przestrzeni pierścieniowej wraz z rosnącą prędkością obrotową rur. Uzyskano dobrą korelację między pomiarami obciążenia haka i ciśnienia przepływu na dnie otworu.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.