Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The existing literature, including records of both fossil and extant echinoid encrustation, is quantitatively analysed and reviewed. This shows that echinoid encrustation (number of encrusted echinoid taphocoenoses) has increased nearly continuously and dramatically to the present day, as confirmed by linear regression values of more than 85 per cent. It also demonstrates that current levels of echinoid fouling stabilised by the Miocene, while there has been a more or less continuous record of echinoid encrustation since the Late Cretaceous. Several increases have been identified since echinoid encrustation first noted occurrence from the Late Carboniferous. This trend is explained as the probable result of corresponding increases in productivity (richness, biomass, energetics, ecospace utilisation) and resources in the marine environment, including epibionts and their hosts. This conclusion matches other indicators, including the number and thickness of shell beds, bioerosion and predation intensity or biodiversity. The trajectory might have been altered to some degree by biases (e.g. selective recording, sampling effort, outcrop area, rock volume) in the same way as palaeobiodiversity estimates. Two recognised long-term gaps in echinoid encrustation (Upper Ordovician–Lower Carboniferous and Permian–Lower Cretaceous) are explained in part as bias and as biological and taphonomic signals. These gaps are caused mostly by the rapid disarticulation of Palaeozoic-type echinoids, the methodology applied here, and a lack of interest in the encrustation of Jurassic echinoids. Conversely, three short-term gaps in the Cenozoic are interpreted exclusively as bias. If correct, the present study demonstrates quantitatively the step-wise increase of productivity through time. It also suggests potential focus on further study, including the collection of new data from the field and pre-existing collections, as best for other encrustation proxies (e.g., percent of coverage by epibionts, ratio of encrusted to nonencrusted shells, taxa richness or numerical abundance of sclerobionts) in cases of large-scale analyses.
EN
An interesting phenomenon of echinoid accumulation occurring in the Lower Turonian (Mytiloides labiatus Zone) at Glanów village (Miechów Upland) is the main topic of the paper. The bed investigated consists of poorly cemented sandy-marly limestones with thickness of about 30 cm. The accumulation of echinoids is older than that of documented in Wielkanoc which is of middleto-late Turonian age and situated in the same region under study. Apart from a dominant echinoid species Conulus subrotundus Mantell represented by adult and juvenile forms that are dispersed in the bed, the second echinoid species -a regular form Salenocidaris granulosa (Woodward)-has also been noted. Additionally, the skeletal elements of crinoids, ophiuroids, asteroids, as well as bryozoans, annelids, poriferans and shark teeth have also been found in the bed under study. Preliminary observations indicate that the origin of the echinoid accumulation corresponds well with the Conulus bed from the Wielkanoc quarry as a result of luxuriant development of echinoids and complex sedimentological, paleoecological and tectonic factors.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.