This paper deals with the problems faced during the research on the insulating structures used in the thermal shielding of flight recorders. These structures are characterised by specific properties determined by, among other aspects, their porosity. The complex and coupled heat-exchange phenomena occurring under the operating conditions of the recorders, and in numerous cases combined with mass exchange, require dedicated test methods. The paper characterises the origin of the research problem, presents a methodology for comprehensive testing of the thermal propertiesand uses the example of determining the insulating properties of the Promalight microporous structure ®-1000R. The authors focussed on thermal diffusivity tests performed by means of the oscillatory excitation method. The measurements were conducted on a test stand to determine the effect the type of gas filling had on the porous structure and the pore filling gaspressure effect on the temperature characteristics of apparent thermal diffusivity. The authors also conducted research on the structure’s resistance to direct flame exposure. The analysis of the obtained results enable recognition and characterisation of the key phenomena of heat and mass transfer; the numerical results exert a significant influence on their application.
The article addresses the issue of the possibility of improving the thermal transport parameters of an epoxy resin, such as thermal diffusivity (TD) and thermal conductivity (TC), by the addition of carbon nanotubes (CNT) as a high thermal conductivity filler. In the case presented here, the effect of the addition of high TC carbon nanotubes to commercial epoxy resin LH145 cured with H147 hardener was investigated experimentally. The main parameter studied was thermal diffusivity. Measurements were carried out for samples of epoxy resin and epoxy resin matrix composites with dispersed CNTs with a volume fraction of carbon nanotubes ranging from 1% to 6%. A modified Ångström temperature oscillation method was used to obtain TD. Basic measurements were performed in the temperature range from 20 ºC to 80 ºC while maintaining high temperature resolution that allows to observe the TD changes with the temperature change. During extended temperature range additional differential scanning calorimetry studies, the effects after curing of the epoxy resin were also characterized. As a result, the temperature dependence of thermal conductivity was determined and data for determining thermal conductivity was obtained. However, the analysis of the obtained results did not show a significant dependence of the studied parameters on the amount of CNT additive for the studied compositions.
W pracy przedstawiono opis funkcjonowania i konstrukcji naziemnego stanowiska do monitorowania stanu technicznego miniaturowych turbinowych silników odrzutowych o ciągu nieprzekraczającym 200 N, wykorzystywanych m.in. do napędu zdalnie sterowanych modeli latających i wojskowych bezzałogowych statków powietrznych. Przyczyną rozpoczęcia prac był brak ujednoliconych procedur pozwalających na jednoznaczną ocenę przydatności eksploatacyjnej badanych silników klasy mini, a także istotne ograniczenia użytkowe istniejących platform badawczych. W celu uzupełnienia zidentyfikowanych braków w tym zakresie zaproponowano budowę autorskiego systemu pomiarowego. Zasadniczym elementem całego systemu było naziemne stanowisko pomiarowe. Oprócz wymagań funkcjonalnych — wynikających z przyjętych procedur pomiarowych — konstrukcja stanowiska wiązała się z wieloma dodatkowymi wymogami dotyczącymi bezpieczeństwa użytkowania, ograniczeń masowo-geometrycznych itp. Ich spełnienie otworzyło możliwość eksperymentalnego sprawdzenia poprawności funkcjonowania stanowiska podczas pracy w różnych warunkach otoczenia: zarówno laboratoryjnych, jak i poligonowych. Pozytywny rezultat sprawdzeń pozwolił na zakwalifikowanie zbudowanego stanowiska jako części składowej systemu odrzutowych celów powietrznych z programowaną trasą lotu pn. Zestaw odrzutowych celów powietrznych ZOCP-JET2, zrealizowanego w ramach projektu badawczego finansowanego ze środków NCBiR.
EN
The work presents description and operation of the mobile engine test station, designed for the miniature turbine jet engines with a maximum trust below 200 N. The engine test bed allows us to monitor the condition of the engine used to drive remotely controlled flying aerial targets or military unmanned aircraft. According to military (Department of Defence) requirements, the designed engine test station is mobile, it can be used in military battlefield conditions and it meets safety precautions and military transport requirements. The reason of the engine investigations was the shortage and lack of information on the engine capability and suitability to work in the field conditions, and first of all on its limitations. The designed engine test station successfully completed tests in laboratory as well as in military field conditions and nowadays it is an integrated part of the Aerial Flying Target System called the ZOCP-JE2 that is designated for the engine’s monitoring and checking before the flight.
W artykule zostały opisane sposoby rejestracji przebiegu zjawiska zderzenia sondy badawczej z przeszkodą w postaci złoża piasku oraz następującego po tym gwałtownego procesu wytracania prędkości przez hamowany obiekt. Badana sonda jest przystosowana do umieszczania w jej wnętrzu kasety ochronnej rejestratora katastroficznego. Testy realizowane były w celu potwierdzenia wytrzymałości kasety ochronnej na przeciążenie o wartości 3400 g działające na kasetę przez ok. 6,5 ms zgodnie z wytycznymi norm: europejskiej EuroCAE ED-112 oraz polskiej NO-16-A200. Sondę rozpędzano do wymaganej prędkości z wykorzystaniem działa pneumatycznego DPZ-250, którym dysponuje Instytut Lotnictwa. Kontrolowany proces hamowania uzyskano dzięki złożu piasku umieszczonym w stanowisku hamującym, które zaprojektowano i zbudowano w ITWL. Przebieg każdego testu zderzeniowego czyli przelot i proces wbijania się sondy badawczej w piasek rejestrowany był przez kamerę do rejestracji zjawisk szybkozmiennych. Przy realizacji kluczowych testów wewnątrz sondy badawczej zabudowany był system rejestracji przeciążeń realizujący bezpośredni pomiar i zapis przeciążeń towarzyszących zderzeniom. Pierwszy etap badań służył potwierdzeniu poprawności przyjętej metodyki oraz opracowaniu procedur badawczych wykorzystywanych w dalszych badaniach. W zasadniczych badaniach wewnątrz sondy badawczej zabudowany był pakiet elektroniki kasety ochronnej rejestratora katastroficznego w celu potwierdzenia spełnienia wymagania dotyczącego przeciążenia. Wykonane badania potwierdziły osiągnięcie parametrów realizowanego doświadczenia spełniających wymogi normatywne warunków testów. Sprawdzenia poddanych testom elementów rejestratora katastroficznego dowiodły jego wytrzymałości na przeciążenie o wartości 3400 g. Zastosowane sposoby rejestracji przeciążenia pozwoliły potwierdzić osiągnięcie wymaganych wartości i charakteru zmian narażenia, któremu poddawana była sonda badawcza podczas testów zderzeniowych.
EN
The article describes methods for recording the course of a test probe crashing into an obstacle in the form of a sand bed and the consequent rapid deceleration process by the braking object. The tested probe is adapted for placing a catastrophic flight data recorder protection cassette inside of it. The tests were conducted in order to confirm the resistance of the protection cassette to a g-load of 3400g acting on the cassette for ca. 6.5 ms, as per the guidelines of the standards: European EuroCAE ED-112 and Polish NO-16-A200. The probe was accelerated to a required velocity using a DPZ-250 pneumatic cannon, owned by the Institute of Aviation. The controlled braking process was obtained thanks to a sand bed located within the braking station, which was designed and constructed at Air Force Institute of Technology (AFIT). The course of each crash test, that is, the flight and the process of a test probe crashing into the sand was recorded by a camera for recording fast transient phenomena. Conducting the crucial tests involved installing an overload recording system inside the test probe, which directly records and saves the overloads associated with collisions. The objective of the first test stage was to confirm the correctness of the adopted methodology and to develop test procedures used in further experiments. The essential tests involved installing a catastrophic flight data recorder electronics package inside the test probe in order to confirm satisfying the requirement in terms of overload. The executed tests confirmed reaching the parameters of the experiment, which satisfy the normative requirements of the test conditions. The checks of the tested catastrophic flight data recorder elements proved its resistance to a g-load of 3400 g. The applied g-load recording methods enabled the inspectors to confirm reaching the required value and the nature of changes of the hazards, the test probe was subjected to during the impact tests.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.